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We investigate necessary and sufficient conditions under which the difference of the resolvents 
R z - ROz of two self-adjoint operators of the form HOi;: F(P} and H;: F(P) + V(Q) is nuclear. 
Here F(P) denotes a positive and continuous function of the usual momentum observables P and 
V(Q) a function of the conjugate coordinate observables. Roughly speaking, we prove that Rz - RO z 

is nuclear if and only if PCP) increases/aster than IPI J t 2 at large IPI and V(Q) falls off to zero/aster 
than J/IQI 3 at large IQI. (For a precise statement of this result Sec. 3.) In particular, it is noticed 
that if Ho = (I PI 2 + m2)lt2 the relativistic free Hamiltonian, then R z - RO. is not nuclear for any of 
the (suitably regular) potential V(QN. w) where QN. w denotes the usual Newton-Wigner position 
operator of the relativistic particle. We also investigate in Sec. 3 the necessary and sufficient condi
tions for Rl V Rif (fi > 0; (3 #= I) to be nuclear. The implications of these results for the asymptotic 
behavior of the total scattering cross sections at high energy is discussed in Sec. 4. 

1. INTRODUCTION 

In the mathematical theory of scattering processes the 
condition that certain pertinent operators are of trace 
class (nuclear) plays an important role. To cite some 
well-known instances one may only recall the results of 
Kato,l Birman and Krein,2 etc. It is shown by these 
authors that the condition that the difference Ra - R~ of 
the resolvents of the total and unperturbed Hamiltonian 
of the system belongs to the trace class (or somewhat 
more generally the condition that Rff - R~n is of trace
class for some integer n) is sufficient to ensure the 
existence and completeness of the M¢l1er wave opera
tors. It is also shown2 that the above mentioned condi
tion implies that the "energy shell" scattering operator 
S(;\) differs from the identity operator by a trace-class 
operator which in turn implies that the total scattering 
cross sections at fixed energies are finite. 

This latter result has been rederived recently by Jauch 
and Sinha,3 who show also that if Rff V R~m is of trace 
class for some positive integers nand m then 

Here V denotes the interaction responsible for a single
channel non relativistic scattering process and <Jtot (E) 
represents the total scattering cross section at energy E. 

It is clear that the finiteness of the above integral [to
gether with certain additional regularity properties of 
(Ttot(E)] implies an upper bound on the high energy be
havior of (Ttot(E). For instance, as pointed out by Jauch 
and Sinha, if R~ V R~ is itself of trace class, then (Ttot(E) 
must decrease to zero as E ~ 00. As a last instance of 
the role of the trace-class condition on R,;: - R~ 
(= R,;: V R~) in scattering theory we mention the recently 
developed theory of time delay of scattering processes4 

where this condition again plays an important part. 

It is thus seen that a number of theoretically important 
results concerning elastic scattering processes can be 
derived from the abstract condition that R z V R~ or some 
related operator is nuclear. 

In order to assess the range of application of these re
sults, however, it is necessary to express this abstract 
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condition in terms of explicit and easily verifiable pro
perties of the interaction V and the unperturbed Hamil
tonian H o' Unfortunately, it seems that this latter prob
lem has not received a systematic treatment in the liter
ature. A systematic investigation of this problem is, 
therefore, one of the prinCipal objects of the present 
paper. 

In connection with the above mentioned question it seems 
that the only result that is readily available in the liter
ature is the one which asserts that R,;: V R~ is nuclear if 
Ho = IpI2/2m; the nonrelativistic free Hamiltonian and 
V is a SUitably regular and sufficiently short ranged 
potential. 5 While this result insures that R. V R~ is 
nuclear in a number of physically interesting situations, 
it is also clear that it does not cover many other cases 
of physical interest. For instance, it is not known if a 
similar result holds when H 0 is the relativistic free 
Hamiltonian (Ip 12 + m 2 )1/2 instead of being nonrelativ
istic Hamiltonian Ip]2/2m. 

With a view to answering such questions we have con
sidered (elastic) potential scattering of a particle whose 
unperturbed Hamiltonian Ho is a positive and continuous 
function F(P) of the momentum observables. In this 
setting we investigate the necessary and sufficient con
ditions for R,;: V R~ to be nuclear. Our main result is the 
theorem 2 of Sec. 3 which formulates such a necessary 
and sufficient condition in terms of the asymptotic be
havior of Ho = F(P) and the potential V(Q) (for large Ip 1 
and large IQ I , respectively). 

Two corollaries of Theorem 2 are of special interest in 
physical applications. They refer to the two special 
cases 

Ho= Ip/2/2m (nonrelativistic), 

Ho = (Ip 12 + m 2 )1/2 (relativistic). 

For the nonrelativistic case Theorem 2 provides a com
plete characterization of the class of potentials for which 
Rz V R~ is nuclear. This result, then, subsumes the re
sult mentioned earlier. 5 For the relativistic Hamiltonian 
H 0 = ( Ip 12 + m2 ) 1/2, on the other hand, our result re
veals that R z V R~ is not nuclear for any of the inter
actions that are (suitably regular) functions of the 
Newton:-Wigner position operator QNW.6 
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In Sec. 3 we also discuss the necessary and sufficient 
conditions for R~ V R~/3 (fj > 0) to be nuclear. Our re
sults (Proposition 5) (for fj '" 1) is not entirely satis
factory inasmuch as we have to make certain technical 
assumption which is not easily verifiable. But it is in
cluded in this paper on account of its application in the 
next section and with the hope that a similar result can 
be proven without the objectionable technical assump
tion in question. 

Finally, in Sec. 4 we discuss the implications of these 
mathematical results for the asymptotic behaviour of 
scattering cross sections at high energy. 

It may be observed, first, that since Rz. V R~ is not 
nuclear in" relativistic potential scattering" 7 there is 
no longer any compelling reason to conclude that the 
total cross section Utot(E) ~ 0 as energy E ~ 00 in this 
case. In this connection it will be noted that according 
to the present experimental findings on the scattering of 
elementary particles the total elastic cross section does 
not tend to zero at high energy but tends, perhaps, to a 
nonzero constant.8 It is thus interesting that although 
this observed behavior of the total elastic cross section 
is prohibited in nonrelativistic potential scattering (with 
short-ranged potential) it is no longer prohibited when 
the correct relativistic expression for the free Hamil
tonian is used instead of the corresponding nonrelativistic 
expression. 

Aside from the above general remark we prove specific 
upperbounds on the high energy behaviour of total 
scattering cross section of "relativistic" as well as 
nonrelativistic potential scattering. The relationship of 
our results to comparable results found in the literature 
will be discussed in Sec. 4. Here we mention only that 
our upperbound on the total scattering section of the 
"relativistic potential scattering" is very close to the 
well-known Froissart bound 

Utot(E) < C(logE)2 as E -) 00, 

which is derived from the axioms of quantum field 
theory.9 It seems significant that the upperbound of the 
type in question results also from a potential model of 
scattering. It suggests that such upperbounds do not, 
perhaps, depend in any essential manner on the axioms 
of field theory. 

Finally, we mention that although the analysis of the 
present paper is limited to elastic scattering processes 
it can be extended to scattering systems with complex 
potentials which takes into account the existence of 
elastic as well as nonelastic processes. This will be the 
subject of a forthcoming paper. 

2. PROPERTIES OF A CLASS OF OPERATOR 
VALUED INTEGRALS 

In this section we shall formulate and prove a mathe
matical result (Theorem 1, below) which will serve as 
the key lemma in our subsequent discussions. It should 
be noted here that the part (ai) of this theorem is only a 
slight generalization of a well-known lemma due to 
Kato,10 whereas the parts (ail) and (b) generalize a re
sult due to Jauch, Sinha and Misra. 4 Although the proof 
of Theorem 1 is identical with that found in the cited 
references except for some minor notational modifica
tions neces'sary to take into account the generalization 
we are considering, we give an outline of this proof for 
the sake of ready reference. 

Before formulating Theorem 1, we need to recall a few 
facts about the representations of locally compact 
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Abelian groups G in order to establish our terminology 
and notations. 

Let G be a locally compact Ab~ian group. Its character 
group will then be denoted by G. If x is a character of 
G [i.e., if x is a continuous function on G which satisfies 
Ix(g) 1:= l;x(gl) X(g2) = x(glg 2) for all glg, E G], ~en 

we shall write (x,g) to denote the value Of the function 
x at the point g of G. It is clear that if g is held fixed 
and x runs g..ver G, then (x,g) defines a character of the 
dual group G. 

Now let g ~ U be a strongly continuous unitary repre
sentation of (fwhich acts on the Hilbert space H. We 
recall that with every such representation of G there is 
associated a unique projec~on -valued measure E('), de
fined on the Borel sets of G such that 

(cp, Ug1/l):= Ie <.x,g)d(¢,E(·)1/I) 

for every g E G and all 1/1 and ¢ in H (SNAG theorem). 

If for every 1/1 in H the numerical valued measure 
IIE(') 1/1112 is absolu.1ely continuous with respect to the 
Haar measure on G, then we shall say that the repre
sentation g ~ U of G is absolutely continuous. In the 
following we sh~ll consider such absolutely continuous 
representations only. 

Let g ~ U be an absolutely continuous representation of 
Gin H. Tten it is well knownll that there exists a 
direct-integral representation 

H = IEBH"dx 
~ 

of H over the measure space (G, dx)(with dx denoting the 
Haar measure on G), such that·in this representation the 
operators U (with g E G) are represented by the multi
plication op~rators with the function (x,g). Somewhat 
more explicitly, there exists a family Hs of Hilbert 
spaces labelled by characters x of G and a corres
pondence 1/1 ~ 1/1" between vectors 1/1 in"H and vector 
valued functions 1/1" (with 1/1" E H,,) on G such that 

for all 1/1, cp in H; and 

Ug1/l ~ (x,g)1/I" 

for every g E G and all 1/1 in H. Here (1/1", ¢"),, denotes 
the scalar product in the Hilbert space H ,,' The direct 
integral representation of H just described is said to 
"diagonalize" the given representation g ~ Ug of the 
group G. 

Finally we need to recall a last result which is con
cerned 'With the theory of Fourier transform of functions 
on locally compact Abelian groups. L~t/(g) denote a 
function on G. I~ Fourier transform! (when it exists) 
is a function on G which is defined by 

J(x) := IG (x,g)/(g)dg. 

Here dg denotes the Haar measure on G. It is known 
from Fourier-Plancherel theory (see Ref. 12) that if 11 
and!2 are two square integrable functions on G with re
~pect tQ its Haar measure, then their Fourier transforms 
! and 12 exist and are square integrable with respect to 
die Haar measure on G. Moreover, if the Haar measures 
on G and G are sl,l.itably normalized relative to each 
other then the Parseval's identity 
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fl1(g)f2(g)dg = f,(}1(x)12(x)dx holds. 

By Haar measures on G and G we shall henceforward 
mean such normalized Haar measures. 

With the above preliminary remarks out of the way we 
can now formulate 

Theorem 1: Let g ~ Ug denote an absolutely con
tinuous representation (in the Hilbert space H) of the 
locally compact Abelian group G and let the corres
pondence 1/1 ~ 1/1 x yield the direct integral representation 
ofH 

which diagonalizes the representation g ~ Ug • Let D de
note the set of all 1/1 in H for which 

M; = ess. sup. III/Ix Ilx < 00. 
xEt} 

Then, 

(a) For every nuclear operator Tin H 

(i) BT(I/I, ¢) = fG(I/I,Ug*TUg¢)dg < 00 
for all 1/1, ¢ E D. 

Moreover, for almost all x E e, there exists nuclear 
operators QT (x) acting in H x such that 

(ii) BT(I/I, ¢) = fa(l/Ix,QT(x)¢x)xdx 

for all 1/1, ¢ ED. 

The family QT(X) is essentially unique in the sense that 
if Q~(x) is another family of nuclear opera,!ors satis
fying (aii), then QT(X) = Q~(x) for a.a.x E G. 

(b) Furthermore, the following relations hOld: 

(i) TrT = fe TrQT(x) (lx, 

(ii) fa IIQT(x)1I 1dx:s IITIl 1• 

Proof: The first step in the proof consists of a direct 
verification of the claims of the theorem for operators 
of rank one. Such an operator T is of the general form 

Tf = 1I.(u,f)v, f E H, (2.1) 

where A is a fixed positive number and u and v are two 
normalized vectors. We write symbolically 

T = 1I.(u, ·)v. 

For operators T of the form (2.1) we have 

fG(I/I, Ug*TUg¢)dg = 11. fG(u, ¢g)(l/Ig, v)dg, 

where ¢g = Ug ¢ and I/Ig = Ugl/I. 

(2.2) 

Since (u, ¢g) is,,the Fourier transform of (u x' ¢x)x which 
?elongs to L2(G,dx) whenever ¢ ED, (u, ¢g) is square 
mtegrable on G, and so is (v,l/Ilt) for 1/1 ED. It follows 
that the integral (2.2) is finite and an application of 
Parseval identity yields 

fG (1/1, Ug* TUg ¢) dg = 1I.fa(ux , ¢x)x(l/Ix, vx)xdx 

= fa (l/Ix,QT(X)¢x)x dX, 

J. Math. Phys., Vol. 14, No.8, August 1973 

where we have defined Q:r<x) = A(ux , ·)xv" on Hx. 

We verify now the properties (bi) and (bii): 

From TrQT(x) = 1I.(ux , vx)x follows the relation 

fa TrQT(x)dx = 1I.(u, v) = TrT 

and from II QT(X) II 1 = 1I.lIuxll"lIvxllx the relation 

999 

fe IIQT(X) II 1 dx = 11. fa II u)lx IIv)1 x dx:s Allullllvil = IITIl1• 

We have thus verified all claims of Theorem 1 for 
operators of rank one [except the claim of essential 
uniqueness of the family QT(X)]. This result then imme
diately extends to all operators T of finite rank whose 
general form is 

" T = :6 1I..(u i, lVi, n < 00, 
i = 1 ' 

(2.3) 

where 1I. i are fixed positive numbers and u i and Vi are 
two finite systems of orthonormal vectors. The corres
ponding QT(X) are given by 

" 
QT(X) = :6 1I. i (u;, ·)xvi. (2.4) 

i=l 

Finally, an arbitrary nuclear operator can be written in 
the canonical form 

" T = lim ~ 1I.i(U i , ·)v i = lim Tn' (2.5) 
n-+oo i; 1 n-+oo 

where 1I. i is a sequence of positive numbers with 
:6:1 Ai < 00 and u i and Vi are two orthonormal sets in H. 
The limit in (2.5) may be understood to be in either 
strong operator topology, operator-norm topology or 
trace-norm topology. 

In order to verify part a(i) of the theorem for an arbi
trary nuclear operator, we observe that 

(1/1, Ug* T Ug ¢) = lim (1/1, Ug* T" Ug¢), 
n-"" 

and the functions (1/1, Ug* Tn Ug ¢) are majorized by 

"" 1(1/1, Ug* Tn Ug ¢) I :s ~ 1I.i I (u i, ¢g) II (I/Ig , Vi) I == F(g). 
.=1 

F(g) is itself the limit of the monotone increasing 
sequence of positive functions 

" F,,(g) == :611. i I (ui,g) II (I/Ig, vi) I. 
i=l 

Now, using again Schwartz inequality and Parseval 
identity, one establishes that 

fGFn(g)dg:s (~ 1I.i) M",M; for ¢,I/I ED. 

Thus, F(g) is integrable according to the monotone con
vergence theorem, and we conclude from the dominated 
convergence theorem that 

To verify part a(i) of the theorem for a general nuclear 
operator, we first show that in the trace-norm topology 

limQT (x) = Q:r<x) exists for a.a. x E e. 
n-oo n 

To this end we consider the mono~ne increasing 
sequence of positive functions on G, 
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n 

Kn(x) = .6 ~)luH" II V! II". 
i=l 

Clearly the integrals jeKn(x)dx are bounded by L;j~l >"i. 

Therefore, accord;'ng to Beppo Levi's theorem, Kn(x) 
converges a.e. in G to an integrable function, say,K(x). 

Now, for n' > n, one has 

which converges to zero as n, n'-,> 00 for a.e.x in G. 
This shows the existence of the trace-norm limit of 
QT (x). 

n 

To conclude the proof of part (a) of the theorem, we have 
still to verify the equality (ii). 

We notice that 
n 

I(I/I",QT (x)¢"),, 1:5: ~>"il(u!, ¢")"Ii(I/I,,, vi») :5:M",MIjIK(x). 
n '=1 

Thus, the functions (I/I",QT (x)¢"),, are majorized by an 
integrable function, and co'hsequently 

lim f.,,.(I/I,,,QT (x)¢"),, dx = f.A(I/I",QT(X)¢,,)dx. (2.7) 
n-C() u n G 

The desired equality follows from (2.6) and (2.7) and the 
fact that it holds for finite rank operators. 

We now verify b(i) and b(ii) in the general case. We 
remark first that 

lim TrTn = TrT, lim TrQT (x) = TrQT(x), 
n-oo n-+oo n 

since all the involved operators converge in the respec
tive trace-norm topologies. 

We have b(i) since 

jTrQT(x)dx = lim jTrQT (x)dx = lim TrT .. = TrT. 
n-oo n 11.-00 

Here the first equality follows again from dominated 
convergence theorem since ITrQT (x)l:5: IIQT (x)1I 1 :5: 
K(x) with K(x) integrable. .. II 

We obtain b(ii) from the inequality 

valid for all finite n and from an application of the Fatou 
lemma. 

This completes the proof of all assertions of the theorem 
except the essential uniqueness of the family QT(X). 

H Qf(x) is another family of nuclear operators such that 

je(l/I" , Qf(x)¢"),, dx = ja(I/I",QT(x)¢"),,dx 

for all ¢ and 1/1 in D, 

then one has in particular, 

for all essentially bounded measurable functions b(x) on 
G, and for any cp, 1/1 E: D. This implies 

(1/I",Qf(x)¢"),, = (I/I",QT(X)¢"),, for a.a.x E: G 
and all ¢, IjI E: D. 
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Thus, 

Qf(x) = QT(X) for a.a.x E: G, 

since the vectors 1jI" and ¢" run over all the vectors in 
14 as 1/1 and ¢ run over D. 

3. NECESSARY AND SUFFICIENT CONDITIONS FOR 
THE DIFFERENCE OF THE RESOLVENTS OF 
TWO SELF-ADJOINT OPERATORS TO BE 
NUCLEAR 

In this section we investigate the necessary and suffi
cient conditions for the difference of the resolvents of 
the total and the free Hamiltonian of a simple scattering 
system to be nuclear. Somewhat more specifically, we 
consider simple scattering systems that describe the 
scattering of spinless particles from local potentials. 
The Hilbert space of state vectors may thus be identified 
with the space L2(d3p) of square integrable functions 
ljI(p) of the three momentum variables p and the free 
Hamiltonian Ho may be identified with the multiplication 
operator by a function F(P) 

(Hol/I)(P) = F(p)IjI(P) for all 1/1 E: L2(d3p), (3.1) 

for which 

13 IF(P)I/I(p) 1
2d3p < 00. 

R 

The total Hamiltonian H will be of the form 

H=HO+ V(Q) , (3.2) 

when Q denotes the usual position observables. They are 
the self-adjoint generators of the three-parameter 
unitary group Ul. , 

(Ul. I/I)(P) == 1jI(P - A) for allljl E: L2(d3p), Ul. = e il.'Q • 

(3.3) 

It should be clear that the free and total Hamiltonians of 
both the" relativistic" as well as the nonrelativistic 
potential scattering are of the forms (3.1) and (3.2). 
The nonrelativistic case needs little comment. One has 
only to choose F(P) = Ip 12/2 m. 

For the "relativistic potential scattering", on the other 
hand, the free Hamiltonian HB is the multiplication 
operator [in L2(d3p/(lpI2 + m 2)1/2)] by the function 
( Ip 12 + m2)112 and the total Hamiltonian HR is of the 
form HR = HB + V(QNW)' where QN)V is the well-known 
Newton-Wigner position operator lin L2(d3p/ 
(lp12 + m 2)1/2)]. But it is evident that there exists a uni
tary mapping from L2(d3p/(lpI2 + m 2)1/2) on to £2 (d3p) 
which maps HQ and HR, respectively to the operators Ho 
[with F(P) = ( Ip 12 + m2)1I2] and H defined by (3.1) and 
(3.2). Thus, the free and total Hamiltonian of the "re
lativistic potential scattering" may also be taken to be 
of the form (3. 1) and (3.2) with F(P) = ( Ip 12 + m 2 )112 
and all statements proved for Ho [with F(p) = 
( Ip 12 + m2)1/2] and H = Ho + V(Q) will hold also for HB 
and HR == HB + V(QNW)' 

With the preceding preliminary remarks out of the way, 
we now proceed to investigate the necessary and suf
ficient conditions for the difference of the resolvents of 
the self-adjoint operators of the forms (3.1) and (3: 2) to 
be nuclear. 

Our first proposition formulates such a necessary con
dition in terms of the asymptotic property of F(P) at 
large Ipl. 
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Proposition 1: Let Ho denote the (self-adjoint) oper
ator of multiplication in L2(d3p) by a continuous and 
positive function F(P) for which there exist a constant 
a> 0 such that l3 lim Ipl .... oc,[F(p)/ Ip I a] = 1 and let H de
note the self-adjoint operator Ho + V(Q), where V(Q)(¢ 0) 
is assumed to be Ho -bounded with Ho -bound less than 1.14 

Then, for Rz - R~rz E p(H)Ap(Ho)] to be nuclear it is 
necessary that a :> 3/2. 

Before proving Proposition 1, we remark that for the 
physically interesting case of potential scattering of a 
Klein-Gordon particle (i.e., a relativistic spinless par
ticle) Proposition 1 yields immediately the 

Corollary 1: For a Klein-Gordon particle in a local 
potential V(QNW) the difference of the resolvents of the 
total and free Hamiltonian is not nuclear for any of the 
potentials V(QNW) which is relatively bounded with re
spect to the free (relativistic) Hamiltonian H3 with H3-
bound less than 1. 

Now, a large class of physically interesting potentials, 
including the Yukawa potential 

ge-flIQI/IQI (for small g), 

can be shown to be HB-bounded with H3-bound less than 
1. Thus, in relativistic potential scattering Ra - R~ is 
precluded from being nuclear for a large class of 
physically interesting potentials. It is worth emphasiz
ing that in this respect the potential scattering of a 
relativistic particle differs sharply from that of a non
relativistic particle. In the latter case, it is known that 
Ra - R~ is nuclear for a large class of potentials (cf. 
Ref. 5; see also Theorem 2 below). 

We now turn to the proof of Proposition 1. 

Since V is H 0 - bounded with H 0 -bound less than 1, it 
follows that H = Ho + V is self-adjoint on DB : DB = DB 
(cf.Ref.1). ThiS, in turn, implies that the ope~ator 1 +0 
lm~ is a bounded operator having a bounded inverse 
(1 + VR~)-l andRz - R~ = - R~ V R~ (1 + V R~tl. 
Hence Rz - R~ is nuclear if and only if R~ V R~ is 
nuclear. It is, thus, sufficient to show thatR~ V R~ is 
not nuclear unless a > 3/2. 

We shall now use part (a) of Theorem 1 to show that 
R~ V R~ is not nuclear unless a > 3/2. Since the unitary 
operators U). defined by relation (3.3) provide an abso
lutely continuous representation of the additive group R3, 
it follows that RJ V RJ is not nuclear unless 

(3.4) 

for all cp E L2(d3p) having essentially bounded Fournier 
transforms. In particular (3.4) must hold for all 
cp E Sp for R~ V R~ to be nuclear. Here Sp denotes the 
Schwartz space of infinitely differentiable and fast de
creasing functions of p. We now show that (3.4) holds 
for ljI, cp E Sp only if a > 3/2. To this end we need 

Lemma 1: J,.et z E p(H 0) with Rez < 0, and let R de
note the set of all continuous functions cp(p) in L2(d3p) 
for which 

lim Ip I ftcp(p) = 0 for all positive integers n. 
Ipl-+co 

Then 

S-limIAlaU).R~U:cp = cp for all cp E R. 
I).I-+co 

A proof of Lemma 1 will be found in the Appendix. Now 
we assume its validity and use it to show that (3.4) holds 
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Since U). and V are both functions of Q and U). is unitary, 
it is clear that U). V U: = V. 

By using this relation, the integrand of (3.4) can be re
written in the form 

(cp, U).R~ V R~U:cp) = (l/IA 12a)(¢,., Vcp).), (3.5) 

where 

cp). = IA la U).R~U:cp. 
Now according to Lemma 1 

S-limcp). = cp. (3.6) 
1).1 .... 00 

Moreover, 

lIV(cp). - cp)1I ~ aIlHo(cp). - cp)1I + bllcp). - cpll 

= all( IA laU).R~U: - 1)Hocp II + bllcp). - cpll. (3.7) 

(The reader can easily verify that in the above all the 
involved vectors are in the domains of the relevant 
operators when cp ESp,) 

Here the first inequality merely expresses the assump
tion that V is the H 0 -bounded, whereas the second 
equality follows owing to the fact that H 0 == F(P) and 
U).R~U: = (F(p - A) - ztl commute. Since Ho cp E R 
when ¢ ESp, the right-hand side of (3.7) tends to zero 
as IA I ~ CXl according to Lemma 1. Thus, 

s-lim V¢,.= Vcp for cp ESp. 
1).1 .... 00 

(3.8) 

It thus follows from (3.5), (3. 6) and (3.8) that for z E 

p (Ho) with z real and z < 0 

(CP, U).R~ V R~U:cp) ~ (1/ IA 12a)(cp, V cp) == C/ IA 12a 

as IA I ~ CXl for all cp E Sp' and this shows that if C == 
(cp, Vcp) ;a! 0, then (3.4) can not hold unless a> 3/2. 
Since there evidently exist cp E Sp for which (cp, VCP) ¢ 0 
this establishes that R" - R~ [for real and negative z in 
p(H) A p(Ho)] is not of trace class unless a > 3/2. But 
it is known that R" - R~ is of trace class for either all 
z E p(H)Ap(Ho) or for none of these points. Hence, this 
completes the proof of PropOSition 1. 

In the next propOSition we formulate another necessary 
condition for R" - R~ to be nuclear which is expressed 
in terms of the asymptotic behavior of the potential 
function V(Q) at large IQI. 

Proposition 2: Let the notations be the same as in 
Proposition 1. In addition to the assumptions of Pro
pOSition 1, assume further that: 

(i) the function F(P) is infinitely differentiable every
where with the possible exception of isolated Singu
larities; 

(ii) the function V(Q) is of the form 

V= Vl + V2 with Vl E L2 and V2 E Lco; 

(iii) there exists a constant y > 0 such that lim 1Q1 .... 00 

I Q I 'Y V(Q) = C, where C is any finite constant if y > 3 and 
a nonzero constant if y ~ 3. Then, in order that Rz -

R~(z E p(H)Ap(Ho) be nuclear, it is necessary that y > 3. 

Proof: ConSider the unitary group V). == e t).· P of 
space translation. As in the proof of Proposition 1 we 
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again conclude [from part (a) of Theorem 1] thatR" -R~ 
is not nuclear unless 

(3.9) 

for all ¢ ESp. Thus Proposition 2 will be established if 
we can exhiblt a ¢ E Sp for which (3.9) does not hold un
less y > 3. Now choose a ¢ E Sp such that its support 
does not contain the points where F(P) is not infinitely 
differentiable. We shall show that for such ¢ and a real 
2 E p(H)Ap(Ho) 

('" v, RO V ROV;*"') ~ C(1/I,1/I) as IAI ~ 00, '1', A. .. A'1' lAir 

where 1/1 = R~¢. (Since our assumptions imply that both 
Ho and H are bounded from below, such real points exist.) 
This, then, leads to the desired conclusion. 

Using the fact that VA commutes with R~ and 

VAV(Q)V: = V(Q + A), 

we obtain the equality 

IAI r(¢, VAR~ V R~V:¢) - C(1/I,1/I) 

= JRs [lA I r V(Q + A) - e] I~(Q) 12d3Q (3.10) 

where ~(Q) is the Fourier transform of I/I(P) = (R~¢ )(P) 
= ¢(P)/F(P) - 2. 

To complete the proof, we have only to verify that the 
integral of (3. 10) converges to zero as I ~ I ~ 00. To this 
end we separate the integral (3.10) into the two inte
grals 

JR3[ IA I rV(Q + A) - e]6 ,AI /2(Q) I~(Q) 12d3Q 

+ ~QI>IAI,..)IAlrV(Q+~)- e]I~(Q)12d3Q, (3.11) 

where 6'AI~(Q) is the characteristic function of the 
sphere 

SIAI~ = {IQI < IAI/2}. 

Now the first of these integrals converges to zero as 
I A I ~ 00, since by our assumption the integrand tends to 
zero (pointwise) as I~I ~ 00 and for a given E > 0 the 
absolute value of the integrand is bounded by the inte
grable function (2 rE + Ie 1(2'1 + 1» I~(Q) 12 for all IAI 
that are greater than a sufficiently large A(E) indepen
dent ofQ. 

As for the second integral of (3. 11), 

1. [IA I rV(Q + A) - e] I~(Q) 12d3Q IQI>IAIt.! 
:S 1. IA I r I V(Q + ~) II~(Q) 12d3Q IQI>IAIt.! 

+ ~QI>IAIt.!lell~(Q)12d3Q. 

The second integral of rhs evidently converges to zero 
as I A I ~ 00. The first integral, on the other hand, 
satisfies the inequality 

1. IA I r I V(Q + A) II~(Q) 12d3Q IQI>111t.! 

:S l·Q , ... IA 1'1 I V1(Q + A) II~(Q) 12d3Q 1 1>1 .. 1",. 

+ J I2IA I '1 I V2 (Q + A) II~(Q) 12d3Q. IQI>IAI 

But since VI E L2 and V2 E Loo, the first of the integral 
on the rhs of the above inequality is bounded by 
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IAI rllvl 112(1. I~(Q) 14d3Q) 112 IQI>IAII2 (3. 12) 

and the second integral is bounded by 

(3. 13) 

Since ¢ is assumed to have the property mentioned 
llbove, it follows that I/I(P) = (R~¢)(P) and, hence also, 
I/I(Q) are both in S. Hence the integrals 

~QI>111/21!ji(Q) 1
4d 3Q and ~QI>IAIt.! I~(Q) 1

2
d

3Q 

both vanish, faster than any power of IA I, as IA I ~ 00. 

Thus (3. 12) and (3. 13) both tend to zero as IA I ~ 00. 

And this completes the proof of Proposition 2. 

Combining propositions (3.9) and (3. 10), we find that for 
the difference of the resolvents of Ho = F(P) and H = 
Ho + V(Q) to be nuclear it is necessary that the kine
matic energy H 0 increases, as a function of p, faster 
than Ip J 3t.! at large Ip I and the potential V(Q) falls off 
to zero faster than 1/ IQ 13 for large IQ I. The next pro
position, which is a slight generalization of a lmown 
result,5 shows that these conditions are also sufficient 
to insure the trace-class property of R .. - R2. 

Proposition 3: Let the assumptions and notations be 
the same as in PropOSition 2. Assume further that 
a > 3/2 and y > 3. Then R. - R~ is nuclear for Z E 

p(H)A(Ho)' 

Proof: In order to show that R .. - R 0 is nuclear if 
a > 3/2 and y> 3, it suffices (cf. Ref. 5) to prove that 
V'R~ belongs to the Schmidt class, where V'is the multi
plication operator by the function V' (Q) = I V(Q) 11/2. 
According to our assumptions, V(Q) belongs to L l(d3Q) 
and, consequently, V'(Q) belongs to L2(d3Q). 

In the Fourier transform representation V'acts as an 
integral operator with kernel V'(p - p') where V'(P) is the 
Fourier transformation of V'(Q). It is a square inte
grable function since ~(Q) is so. Now V'R~ is an integral 
operator with kernel V'(p - p')[1/F(p') - z]. 

We notice that the function [I/F(P') - z] is_also square 
integrable when a> 3/2. H we consider I V'(P) I 2 and 
I [l/F(P') - 2]12 as two Ll functions, the well-lmown 
inequality IIf*glll:S IIfll 1 IIgll 1 for the Ll norm of the 
convolution of Ll function yields, in our case, 

if d3pd3p' I V(P _ p') 1 12 
F(P') - 2 

:s Jd3P Iv'(p) 12 J d3p' I 1 12 < 00. 
F(P') - z 

Therefore, the kernel representing the operator V'R~ is 
. squ~re integrable and V'R2 belongs to the Schmidt class. 
This concludes the proof of the Proposition 3. 

H we combine propOSitions 1, 2 and 3 we find a complete 
characterization of the class of free Hamiltonians H 0 = 
F(p) and the potentials V(Q) for whichR .. ~R~ is nuclear. 

Theorem 2: Let the assumptions and notations be as 
in PropoSition 2. Then R .. - R<1 is nuclear if and only if 
a> 3/2 and y> 3. 

In the next section we shall see that the trace-class pro
perty of the operators Rf V R2 8 (f3 > 0) implies specific 
conclusions about the asymptotic behaviour of total 
scattering cross sections at high energy. We shall, 
therefore, conclude this section by mentioning certain 
conditions which ensure R~ V R<113 to be nuclear. 
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It may be observed, first, that by a slight modification of 
the arguments employed in the proof of Propositions 1, 2 
and 3, and that given in the Appendix, one can easily 
establish 

Proposition 4: Let the notations and assumption be 
the same as in Propositions 1 and 2. Then RiO a V ~ a 
(with (3 > 0) is nuclear if and only if a' {3 > 3 2 and 
'Y> 3. (Since we are considering in general nonintegral 
powers of R~, R2 a should be suitably defined. Here and 
in the following we consider real and negative z so that 
R~ is a positive self-adjoint operator. R~a may then be 
unambiguously defined by the functional calculus of R~.) 

Proposition 3 does not provide, however, any information 
about R! V R ~ a when {3 ;.0 1. For unlike the case with 
(3 = 1, the trace-class property of R! V R2a does not in 
general follow from the corresponding property of 
R~a VR~awhen{3;.o 1. 

In order to conclude the trace-class property of Rt VR~ a 
from that of R~ a V R~ a it is, therefore, necessary to 
impose additional restrictions on Ho and H. One such 
restriction is the requirement that, for a real and nega
tive C E p(H)Ap(Ho)' (Ho - c)a and (H - c)a have the 
same domain. It is easy to verify that under this con
dition the trace-class property of Rt V R~ a follows from 
that of R~ a V R~ a. This result, together with the obser
vation that if R! V Rp a is nuclear for some {3 = {30 then 
it is so for all {3 > (30' allows us to prove the following. 

Proposition 5: Let the notations and assumptions be 
the same as in PropOSition 2. Assume further that for a 
real and negative c E p(H)Ap(H 0) (H 0 - c) a and (H - c) a 
have the same domain for 3/2a :s; {3 < 3/2a + E, with E 
being some positive number. 

Then Rf V R~a is nuclear if and only if a{3 > 3/2 and 
'Y> 3. (Since the assumption concerning the domains of 
(Ho - c)a and (H - c)a is not easily verifiable, it will be 
desirable to prove this result without such assumptions. 
Unfortunately, we are not able to do so at present.) 

This proposition implies that in the relativistic case 
[Ho = (lpl2 + m2)t!2]R! V Rpa is nuclear if {3 > 3/2 and 
'Y > 3, whereas for the nonrelativistic situation Rt V Rp a 
is nuclear if {3 > 3/4 and'Y > 3. We shall see in the next 
section that this difference in the property of R! V RJ a 
in the relativistic and nonrelativistic case results in 
different asymptotic behavior of total cross sections in 
these two cases. 

4. ASYMPTOTIC BEHAVIOR OF SCATTERING 
CROSS SECTION AT HIGH ENERGY 

The mathematical results of the preceding sections will 
be used now to derive specific asymptotic behavior of 
the total scattering cross section of potential scattering. 

For this we follOW the analysiS of Jauch and Sinha3 and 
prove 

Proposition 6: Let the self-adjOint operators Ho and 
H represent (respectively) the free and the total Hamil
tonian of a simple scattering system (i.e., let H 0 and H 
satisfy the usual asymptotic and completeness conditions 
of single-channel scattering theory15. Assume further 
that both H 0 and H are bounded from below; H 0 has abso
lutely continuous spectrum and DH = DH • If in addition 

o 
R a(H - H 0)R~ a (with c a real and negative point of 
p(H)Ap(Ho)] is nuclear for some given (3 > 0, then 

J.
""Utot(E) Ikl2 
-'-----dE < 00, 

o (E-c)2a 

J. Math. Phys., Vol. 14, No.8, August 1973 

1003 

where Utot (E) denotes the total scattering cross section 
at energy E and Ik 12 denotes the momentum square of 
the particle whose free (kinematic) energy is E. 

Proof: Under the stated assumption one proves that 
(cf. Ref. 16) 

for all cp E Hand all 1/1 E DB = DH • 
o 

Here 
n . iHt -iB t •• ~ == s-hme eO; V=H-Ho 

t ..... zoo 

(4.1) 

and T = S - Iwith S being the scattering operator o~n+. 
Relation (4. 1) in conjunction with the intertwining pro
perty of O~ then yields 

(cp,R~aTR~al/l) = _ i l""(cp,eiHotn~ R: V R~ae-iHotl/l), 
-"" (4.2) 

which holds for all cp and 1/1 in some suitable dense mani
fold D. (D may be taken to be, for instance, the set of all 
1/1 for which" 1/1." as functions of E are continuous func
tions with compact support; here 1/1. denotes, of course, 
the "components" of 1/1 in the Hilbert space H. appearing 
in the direct integral representation H = 1$H. dE which 
" diagonalizes" the operator H 0') Since S ana, therefore, 
T commutes with H o, there exist the reduced "energy 
shell" operators S. and T. acting in the Hilbert spaces 
H. of the direct integral representation of H 

in which Ho is" diagonalized". We have 

and 

( A. Roa TRoa. ,,) = J.""(CP., T.I/I.) dE 
,/" c c'/' o (E-c)2a • 

On the other hand, since Rt V Rp a is assumed to be 
nuclear and the operators eiHot constitute an absolutely 
continuous representation of the additive group of real 
line, it follows from Theorem 1 that the right-hand side 
of (4.2) is of the form 

10
00 

(CP., T.I/I.)dE 

when T. is a family of nuclear operators acting on H •• 
Relation (4. 2) then implies (owing to the essential 
uniqueness of the family T.) T. = T./{E - c)2 a for a.a. E. 
Thus, from Theorem 1, we conclude 

J"" Tr T 
• • dE = TrO * R a V RO a < 00 o (E-c)2a - c c • 

In particular, 

1 Tr. T. 1 Tr.(T. + T:) 
2Re dE = dE < 00. 

(E - c)2a (E - c)2a 
(4.3) 

The desired relation then follows by relating Tr.(T. + 
T:) to Utot( E) with the aid of the optical theorem. In fact 
the unitarity of S implies that 

T. + T: = - T: T. for a.a. E, 

so that 
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where II 112 denotes the Hilbert-Schmidt norm of ol?er
ators. But it is well known that IIT.II~, = Utot(£) Ikl 2 
except for a constant factor. Relation (4. 3) is thus equi
valent to the desired relation 

(4.4) 

It is clear that if Utot (£) is continuous in £ and monotone 
for large £, as is usually the case for scattering systems 
encountered in physics, then (4.4) implies specific asym
ptotic behavior for O:~ot (£). In fact, for the nonrelativistic 
case where £ = Ik12/2m (4.4) implies 

Utot (£)£ Utot (£) 
--'---- "'" --- ~ 0 as £ ~ co, (4.5) 
(£ - c)28-1 £28-2 

whereas in the relativistic case for which £ = ( Ikl2 + 
m 2 )1f2 we find 

Utot (£)€2 ~ Utot (£) 0 (4.6) --. --~ --- ~ as € ~ co. 
(€ _ c)28-1 £28-3 

In order to find the best asymptotic estimate of Utot (€) 
we have to substitute in (4.5) and (4.6) the minimum 
values of f3 for which Rtf V R~8 is nuclear. NOW, accord
ing to Proposition 5 of Sec. 3 the permissible values of f3 
are: 

(i) t < f3 for the nonrelativistic potential scatter
ing; 

(il) 1 < f3 for the relativistic case. Thus for the 
nonrelativistic potential scattering we find the 
asymptotic behavior 

lim £1f2-outot (£) = 0 (for any 0 > 0) 
'->00 

whereas in relativistic potential scattering we find only 

Utot (£) 
lim --= 0 (for any 0 > 0) 
'->00 €o 

(AR )· 

It should be emphasized that in our analysis the dif
ference between the asymptotic behaviour ANR and AR is 
solely the result of the difference in the relativistic and 
non relativistic kinematics of free particles expressed by 
the differing functional dependence of the free Hamil
tonian on momenta. And this difference of ANR and AR 
does not point to any essential difference of the inter
actions which produces the scattering in the two cases. 

We conclude this section with a few remarks about the 
relation of the asymptotic properties ANR and AR to com
parable results found in the literature. 

For nonrelativistic potential scattering with spherically 
symmetric potential V(r) satisfying 

100 

V(r )r2dr < co, 
o 

one concludes from a study of the dispersion relations 
that17 

£II2Utot (£) ~ 0 as £ ~ co. 

Thus, our result ANR is a weaker version of this known 
result. Our method of proof, however, is independent of 
the known method. Although our method yields a weaker 
result for nonrelativistic potential scattering it has the 
advantage of being applicable to relativistic potential 
scattering as well. 
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As regards AR, it seems that no such result has been 
rigorously established in the literature for relativistic 
potential scattering. It may be compared, however, with 
the well-known Froissart bound 

which has been derived from the postulates of quantum 
field theory. 8 

The result AR is, of course, weaker than (F) in two re
spects: 

(1) Since our analysis in this paper is limited to simple 
scattering systems, the asymptotic property AR refers to 
elastic cross section only, whereas the bound (F) applies 
to the total (i.e., elastic + nonelastic) cross section. As 
mentioned in the Introduction, we shall remedy this de
ficiency in a forthcoming publication where we extend 
the analysis of the present paper to scattering pro
cesses with complex optical potentials. 

(2) Aside from the above, AR is also a weaker result 
than (F) since an upper bound of the type 

is consistent with AR for any positive integer n, whereas 
Froissart bound specifies n to be 2. 

APPENDIX 
We demonstrate Lemma 1 stated at the beginning of the 
proof of the Proposition 1. 

Proof of Lemma 1: Since UAF(P)U~ = F(P -1.), one 
has 

1111.1 aUAR!>UA'4> - 4> 112 = JI 11.1 a - 1121 4>(p) 12d3p. 
F(p - 1.) - Z (AI) 

For fixed 1., we integrate se,Parately in (AI) over the 
sphere SIAl!,! = {P lip I ::s 11.1/2} and over its exterior. 
Let e lAl/2(p) be the characteristic function of the sphere 
SIAI/2. We show that both parts converge to zero as 
11.1 ~ co. 

(i) The integral over SIAI/2 reads 

JIF(p~1.~)a_Z -11 2elAll2(P)I4>(P)12d3p. (A2) 

Its integrand converges pointwise to zero as 11.1 ~ co in 
view of the asymptotic behavior of F(P). Moreover, for a 
given positive € there exists a number A, such that 

for all 11.12 A .. 

We choose 11.1 2 2A, and obtain the following majoriza
tion (recall that Rez < 0): 

I 
11.la I 11.la 

F(P -1.) _ Z - 1 eIAI/.!(p)::s IFiji _ 1.) _ Z I eIAI/.!(p) + 1 

_ 11.1a. e (P) + 1 
- {[F(P -1.) - Rez]2 + (lmz)2}1/2 1).1/2 

11.1 a 
::s F(P _ 1.) e 1A1/.!(P) + 1. 

For Ip I > 11.1/2 the first term of this last expression is 
zero, and for the p::s 11.1/2, it is majorized by 



                                                                                                                                    

1005 Ph. Martin and B. Misra: On trace-class operators 

Since if IA I ~ 2A. and Ip I ~ IA 1/2, one always has 
Ip-AI~ IAI - Ipl ~ IAI/2 ~ Ac' Therefore,for a 
given E > 0, the integrand in (A2) is bounded by the inte
grable function (1 + (1 + E)2 a ) 14>(P) 12 for all IA I greater 
then the number 2A. (which is independent of pl. The 
dominated convergence theorem implies that the part of 
the integral over SI)'I/2 vanishes as I~ I ~ «>. 

(ii) To evaluate the contribution of the exterior of SIAl!.!' 
we consider the following inequality 

I IAla _ 11 < IAla 
F(p - A) - z - ([F(p - A) - Rez]2 + (Imz)2} 112 

+ 1~~+ 1 
IRezl ' 

which is valid because F(P) is positive and Rez < O. 

We have now 

1. I IAla 11214>(P)1 2d3p 
Ipl> JAI/2 F(p -~) - z -

~ (-~ + 1\ 2 1. 14>(P) 12d3p. (A3) IRez I ') Ipl>JAI!.! 

If 4>(P) belongs to R, the integral on rhs of (A3) vanishes 
faster than any power of IA I as I~ I ~ «>. And this con
cludes the proof of the lemma. 
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Matrices representing the Lie algebra of SU(3) can also serve as Clebsch-Gordan coefficients for the 
direct product of the basis states of the representation times their ad joints. This fact enables us to 
obtain a number of properties, both general and specific, of SU(3) matrices. To carry out our 
program we develop a general formula for constructing a symmetric tensor of rank (n + I) from the 
product of a tensor of rank n times an octet. We then deduce some general properties concerning 
the multiplicity of representations contained in the direct product of a representation and its adjoint. 
In the specific cases of the six- and ten-dimensional representations we obtain the characteristic 
equation for the SU(3) matrices, and for the 27-dimensional representation we obtain other 
properties. We also compute the traces of products of two, three, and four matrices in any 
representation. 

1. INTRODUCTION 

There are two ways of looking at matrix representa
tions of a Lie algebra: either as sets of matrices obey
ing the commutation rules of the algebra or as Clebsch
Gordan coefficients for the basis states of representa
tions and their adjoints. The first viewpoint certainly 
gives us the tools with which to determine the proper
ties of all representations of the algebra, but there are 
times when the second viewpoint is actually more con
venient. This is particularly true of properties which 
are special to one representation and do not have simple 
counterparts in other representations, for example the 
anitcommutator of two matrices. Here we shall study 
this kind of property for the algebra of SU(3). 

The essential pOint we want to make is that the Clebsch
Gordan series for a representation times its adjoint 
can be used to deduce properties of the matrices that 
span the representation. If, for example, a certain rep
resentation does not appear in the Clebsch-Gordan 
series, then any combination of matrices corresponding 
to that representation must vanish. If a particular 
representation occurs only once in the series, then all 
combinations corresponding to it must be proportional 
to one another. Symmetry or anti symmetry under the 
exchange of the original representation and its adjoint 
also carry definite implications for the matrices. 

To develop the point more preCisely, we suppose that 
the (n x n) Hermitian matrices B ,)a = 1, 2, ... , 8) obey 
the SU(3) commutation rules 1 

(1. 1) 

and that the state vectors I/Ia(a = 1, ... ,n) transform 
according to this representation under the action of 
abstract SU(3) generators To.: 

[To.' T B] = ifaByTy' 

[T a,l/Ia] = I/Ib(Ba)ba' 
(1.2) 

The representation adjoint to B a is given by the negative 
transpose of B a' 

(1. 3) 

and the corresponding basis vectors lila (a = 1,2, ... ,n) 
are such that 

Under the action of T a' the product vector 

fi" = (Rx)abl/lalilb, 
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(1. 4) 

(1. 5) 

where R" is any (n x n) matrix, transforms according 
to the rule 

[Ta,fi,,] = (R)ab[l/Ic(Ba)caliib + l/Ialilc(Ba)cb] 

= [Ba,R"Lbl/laliib• (1. 6) 

Thu!!. the effect of the operator To. upon the product vec
tor R" is governed by the commutator of the matrices 
Ba and R". 

We can construct matrices Rx from the Ba themselves, 
from their dual matrices 

(1. 7) 

and from symmetrized products of two or more of these 
SU(3) matrices. II R" is one of the B a , then, because of 
the commutation rules of Eqs. (1. 1) and (1. 7), the corres
ponding vector fi" behaves as a member of an octet . .!f 
R" is a symmetric product of two B a matrices, then R" 
will be an admixture of (27)-plet, octet, and singlet; the 
last two components can be removed by adding suitable 
counter terms to R", and we are3hen left with a pure 
(27)-plet combination of I/Ia and I/Ib' In a similar way, we 
can make (64)-plets, (125)-plets, and higher representa
tions from I/Ia I8lliib by taking the R" to be_symmetrized 
products of three, four and more Ba and BB matrices. 

This procedure for constructing R" matrices of higher 
and higher rank can obviously go on ad infinitum, but at 
some point we reach the maximal representation con
tained in I/Ia 181 liib• The next step in the procedure then 
takes us to a representation that does not exist for the 
particular vectors under consideration, and the only way 
to avoid a contradiction is for the corresponding R" 
matrix to vanish. If, for example, the maximal repre
sentation is the (k + 1}3-fold one, the appropriate R" is 
a symmetric product of k B a matrices plus the counter 
terms necessary to remove lower representations; the 
R" made from (k + l)Ba matrices plus counter terms 
corresponds to the (k + 2)3-fold representation, and so 
it must vanish in this case. 

It is also possible to construct other R" matrices for 
the (k + 1}3-fold representation by replacing one or 
more Ba by the dualBa' Now the maximal representa
tion occurs once and only once in the Clebsch-Gordan 
series: consequently, these other ways of constructing 
it must all be equivalent to the first one, and the various 
R" matrices must be proportional to one another. The 
same argument applies to any representation that occurs 
fewer times in the Clebsch-Gordan series than there 
are ways of making it from B a and B a' 

Copyright © 1973 by the American Institute of Physics 1006 
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The vanishing of R x matrices which c~respond to 
representations not contained in l/Ia ® l/Ib' and the pro
portionality of others corresponding to representations 
that are unique both provide us with relations between 
products of Bo. matrices. In the product 3 ® 3,for 
example, the maximal representation is the octet, and 
so the combination of ,\ matrices corresponding to the 
(27)-plet must vanish: 

(1.8) 

In 8 ® 8 the (27)-plet occurs only once, and so the appro
priate combination of two F matrices must be propor
tional to the one obtained from two D matrices2 ; as a 
result we find that 

(1. 9) 

Furthermore, this (27)-plet is symmetric under the ex
change of the two octets, and so the (27)-plet formed 
from one F and one D matrix must vanish because it is 
antisymmetric: 

(1. 10) 

These results for the 3- and 8-dimensional represen
tations are of course well known,l,3 and they have been 
derived in other ways. Nevertheless, they do illustrate 
the point that we can use the Clebsch-Gordan series 
for l/Ia ® iiib to obtain properties of the corresponding 
SU(3) matrices. Here we shall use this observation to 
determine the characteristic equations for matrices in 
the 6- and 10-dimensional representations, to obtain a 
general property of (27)-plet matrices, and to compute 
the traces of products of B a matrices. 
In the next section of the paper we discuss some general 
properties of SU(3) matrices that hold in all represen
tations. We also consider two special classes of repre
sentation: the triangular class in which the dual matrix 
B ct is e!"0portional4 to B ct; and the self- adjoint class in 
which B ct is unitarily equivalent to B a' The third section 
deals with the basic technical problem of the paper, 
namely the construction of tensors belonging to the 
(k, k) representation of SU(3) from symmetrized pro
ducts of B ct and B B matrices. We solve it inductively: 
that is, given a tensor of rank (k - 1), we show how to 
combine it with one B a or B B to form a tensor of rank k. 
Our formula enables us to build second-rank tensors 
from the B ct and B B matrices, and then to use them to 
construct third-rank ones; after that we use the third
rank tensors to construct fourth-rank ones and so on. 
We also prove a general result concerning the number 
of times the (k, k) representation occurs in the direct 
product of a representation times its adjoint. 

In the fourth section we show that the third-rank tensor 
must vanish for 6-dimensional B a matrices, and that 
the fourth-rank tensor must vanish for 10-dimensional 
ones. From these conditions we then deduce the charac
teristic equations for B a matrices in the 6- and 10-
dimensional representations, respectively. In the fifth 
section we observe that the direct product of two (27)
plet vectors contains one symmetric and one antisym
metric (64)-plet, and from this we obtain some general 
properties of B ct matrices in that representation. 
Lastly, we note that tensors we construct must have 
zero trace, and this _enables us to compute the traces of 
products of B ct and B B for all representations. 

2. GENERAL PROPERTIES 

Our object in discussing the general properties of SU(3) 
matrices is to demonstrate that, in any representation, 

J. Math. Phys., Vol. 14, No.8, August 1973 

B a and B a form a complete set with respect to oct~ts; 
that is, any other octet matrix, for example d aByB BB yt 

can be expressed as a linear combination of B a and B ct' 

This result is neither surprising nor new,5 but the 
specific formulas to which it gives rise will be very 
useful in our subsequent analysis. 

By definition, the matrices B a satisfy the commutation 
rules of Eq. (1. 1): 

[Ba.,Ba] = ifa.ayBy' 

That the dual vectors B B satisfy a similar commutation 
rule, namely 

follows from the definition of B B in Eq. (1. 7) and the 
Jacoby identity 

(2.1) 

ifim"djlk + ifilkdmjk + ifijkdlmk = O. (2.2) 

Equations (1.1) and (2.1) mean that B B and B a both 
transform as octets under the action of B a' 

Because the structure coefficients ifii" are antisym
metric under the exchange of adjacent indices, the B a 
matrices commute with the two Casimir operators5.6 

M2 == 2BaBa = ~2(/.I1,/.I2)1 
and (2.3) 

M3 == 2BaBa == 2daByBaBaBy = - ~3(1-'1,/.I2)/, 

where I is the unit matrix. The eigenvalues ~2 and 
~3 are functions of the characteristic numbers7 

(/.Il' /.12) of the representation, 

~2(/.I1' 1-'2) = t[1-'~ + I-'~ + (1-'1 + 1-'2)2 + 6(1-'1 + 1-'2)]' 

~3(1-'1' 1-'2) = ~(1-'2 - /.11) [(1-'1 + 21-'2)(/.12 + 21-'1) 

+ 9(1-'1 + 1-'2 + 1)], (2.4) 

and the dimension of the representation is given by7 

D(I-'l' 1-'2) = ~(/.I1 + 1)(/.12 + 1)(1-'1 + 1-'2 + 2). (2.5) 

As a special case we note that in the octet (1-'1 = 1-'2 = 1) 
the B a can be represented by the structure constants 

(Ba)ab = (F a)ab = - if aab (2.6) 

and the quadratic CaSimir operator then becomes 

F aF 0.= 3/. (2.7) 

From the antisymmetry of the structure constants, we 
find that for any representation 

ifaByBBBy = hfaBy[BB' By] = - ~(FBFB)aTBT' 

Therefore, using Eq. (2. 7) we obtain 

if aByB BB y = - i B a' 

By the same argument we can show that 

if aBy(B BBy + BBB y) = - 3Ba• 

(2.8) 

(2.9) 

In order to separate the two terms on the left-hand side 
of Eq. (2. 9), we use the definition of Ba in Eq. (1. 7), the 
identity of Eq. (2.2), and the trace condition3 
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Tr(F a! aDy) = ~d",ay (Dy)ab = dyab] (2.10) 

to write 

if",ay B a-i3y = if",aydYPTBaBpBT 
• - 3 -. -

= if",ayBaBy - "2 B ", - ifaayBaBy' (2.11) 

Combining Eqs. (2.9) and (2.11), we have 

(2. 12) 

Before we consider the effect of multiplying B B by 
if ",ay' we need a result involving the d aay coeirici~nts. 
If we multiply both sides of the identity3 

d;j",dkl ", + dik",d1j ", + dil",d;"", 

= i(6;/j"l + 6ik 6jl + 6116i~ (2.13) 

by B;BjE,., we obtain 

2d1k",B",B" - Tr(D,.FpD;)BIB p + dlk",B"B a = t(M2 - I)Bz· 
(2.14) 

Now because3 

Tr(DiDzFp) = ~ifiIP' 
Tr(DzFm ) = 0, 

we find from Eq. (2.14) that 

(2.15) 

(2.16) 

With the aid of this result and the identity in Eq. (2.2), 
we can now show that 

if ",ayBaBy = if ",aydypTBaBpB T 

= - H~2(J.!1'J.!2) + ~)Ba' (2. 17) 

Lastly, by multiplying Eq. (2. 13) first by BIBj B" and 
then by B;BjB.s1 we obtain the two results 

and 

B",B", = Hi~2(J.!1' J.!2) + t)~2(J.!1' J.!2)I. (2. 19) 

This completes our demonstration that all octet mat
rices must be linear combinations of B", and B '" . 
The results obtained above are valid for all represen
tations of SU(3), but their forms for two particular 
classes of representation, namely the triangular and 
the self-adjoint, are of particular interest to us. In 
triangular representations one of the two characteristic 
numbers is zero and the dual matrix B", is proportional8 

to B", 

B = 
'" 

(2.20) 

It is not difficult to show that all the formulas in Eqs. 
(2.9)- (2.19) are consistent with Eq. (2.20) when either 
J.!r or J.!2 vanishes; the dimensions and quadratic Casimir 
eigenvalues are given by 

D = t(J.! + 1)(J..I + 2), ~2 = ~ J.!(J.! + 3), J.! = J.!l or 1-'2' 
(2.21) 
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In self-adjoint representations the matrix B is uni
tarily equivalent to its adjoint B", (see Eq. 1.3), 

(2.22) 

and the characteristic numbers are equal to one another: 

(2.23) 

Ham.mermesh9 has given general arguments to the effect 
that the transformation matrix U of Eq. (2. 22) must 
either be symmetric or antisymmetric; and that when it 
is symmetric the matrix B", can be chosen in such a 
way as to be equal to its adjoint. Biedenharn, Nyuts, 
and Ruegg 10 have shown that for self-adjoint represen
tations of SU(3), the matrix U is indeed symmetric: we 
shall therefore assume that for these cases 

(2.24) 

Being Hermitian, B '" must_be antisymmetric and pure 
imaginary, while its dual B", is symmetric and real: 

(2.25) 

The best known examples of this type are the F", and D '" 
matrices of the octet (1, 1) representation. As in the 
triangular case, so here the results in Eqs. (2.9)-(2.19) 
are consistent with Eqs. (2.23)-(2.25); in particular, the 
dimension of these representations are perfect cubes, 
and the cubic Casimir eigenvalue is zero: 

D(P., 'P.) = ('P. + 1)3, ~3(P., p.) = 0, ~2 = 2J.!(J.! + 2). 
(2.26) 

3. SYMMETRIC TENSORS 

We turn now to the construction of symmetric tensors 
from products of SU(3) matrices. Since our method is 
an inductive one, we begin by discussing the general pro
perties of an nth-rank tensor. We then show how to 
combine it with B", or with Ba to form a tensor of rank 
(n + 1), and we give examples of tensors constructed 
from products of two, three, and four Ba and B", mat
rices. Finally, we show that the representation (n, n) 
cannot occur more than (n + 1) times in the direct pro
duct of a representation and its adjoint. 

A. The general tensor of rank n 

Let Ti I ... I denote a tensor of rank n which is sym-
1 2 n 

metric under the exchange of any two indices: 

(3.1) 

Under commutation with Ba. each index of the tensor 
behaves as if it were an octet [see Eqs. (1. 1) and (2. 1)], 

and so the quadratic Casimir commutator is given by 

(3.3) 

where 6"<8 denotes the sum over all pairs of indices 
with r < s and includes tn(n - 1) terms. Because of 
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the results in Eqs. (1. 9), (2. 7), and (2. 13), the left-hand 
side of Eq. (3. 3) can be rewritten as 

2n(n + 2)Ti i '''i - 2 6 0i i Ti "'i A"'Ai '''i 
1 2 n y < s y S 1 "'-1 S + 1 n 

- 6 6 d i i pdpA"TI '''I A'''"i "'j' (3.4) 
1" < s 'Y S 1 Y-l S + 1 n 

One way of ensuring that T j i ". i be an eigentensor of 
1 2 n 

the Casimir commutator is to require 

(3.5) 

for any subset (i'l ' •• i~_ 2) of (n - 2) indices chosen 
from the original set (iI' .. in)' Since these conditions 
also ensure that T i i .. , j is an eigentensor of the cubic 

1 2 n 
Casimir commutator with zero as its eigenvalue (see 
the Appendix for details), we shall henceforth assume 
that they are indeed satisfied. The eigenvalue equations 

2[B", [B", Ti j "'j ]) = 2n(n + 2)TI j '''i , 
12 n 12 n 

2d"a"[B,,, [B a , [B", T; i'" j ]]] = 0 • , 1 2 n 

(3,6) 

then imply that the nth rank tensor transforms according 
to the representation (n, n) of SU(3) [see Eq. (2. 26)]. 

The conditions of Eq. (3. 5) can be understood by noting 
that the totally symmetric product of n octets contains 
(n, n) as the maximal, but not the only, irreducible rep
resentation in its Clebsch-Gordan series ll ; for ex
ample, in the case n = 2, the series contains a singlet 
and an octet as well as the (27)-plet. Equations (3.5) 
serve to eliminate all representations other than (n, n) 
from the tensor T i j , •• j • They also have the following 

1 2 n 
very useful consequence, 

Consider the quantity 

(3.7) 

Because the tensor is symmetric in A and j.L we can re
write Q as 

Q = ~ (dA"pd"ap + d" "pdA ap)T i
l
'" ;n-2 A,,' (3.8) 

Then, using the identity of Eq. (2.13) and the conditions 
of Eq. (3. 5) we obtain 

Q = tTl ... j "a' 
1 n-1l 

(3.9) 

There will be many opportunities to use this result in 
the calculations of the next subsection. 

B. Constructing the tensor of rank (n + 1) 

To construct a tensor of rank (n + 1) which satisfies 
Casimir conditions equivalent to Eq. (3. 6) with n re
placed by (n + 1), we consider the product 

(3.10) 

where the 'summation runs over all cyclic permutations 
of the indices (iI' ... , in+ 1)' and C j can be either _ n+l 

B in+
l

, or B in+
l

, or any other octet matrix. After some 
manipulation like that used in Eqs. (3.3) and (3.4), we 
obtain the basic result 

2[B" , [B", T]) = 2(n + l)(n + 3)T- 12£ - 4N, (3.11) 

where 
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(3.12) 

The sum 6 .. <s runs over all pairs (i .. is) with r < s and 
it contains ~n( n + 1) terms; the indices (i·l ... i~_l) are 
those remaining when i .. and is have been removed 
from the original set. 

If we multiply Eq. (3.11) by OJ i ,sum over all values 
n' n+l 

of these indices, and make use of Eqs. (3. 5) and (3.9) we 
find that 

2[B",[B~,Ti "'j ACA])=2(n-l)(n+ 1)Ti ..... ACA' 
..... 1 n-l 1 n-l 

(3. 13) 
Consequently the quantity N of Eq. (3. 12) is also an 
eigentensor of the Casimir operator: 

(3. 14) 

We now multiply Eq. (3. 11) by d j • j i , sum over all 
n n n+l 

values of the indices (in' i n+ l ), and then sum over all 
permutations of (iI' ... ,in-I> i~). With the aid of Eqs. 
(3.5) and (3.9), and of the identity (2. 13) written in the 
form 

{DpD)"a = - d;jk(D k)"a 

+ t (oU o"a + 0i" 0ja + 0iBOj,,), (3.15) 

we obtain the result 

2[B",[B", I; d i A"Ti "'i AC,,]] 
c'p(il'''jn) n 1 n-l 

= 2n(n + 2) I; d j A"Ti '" i AC" 
c'p(i 1'"in) n 1 n-l 

-46diiTTi·· .. i'TACA' 
y < S 'Y S 1 n-2 

(3. 16) 

where (iI ' .. i~-2) represents the indices remaining 
when i .. and is are removed from (i l ••• in)' Equations 
(3. 16) and (3. 13) imply that the tensor 

T j '''i = 6 d j AjJTi '''i AC 
1 n c'p(il"'i

n
) n 1 n-l jJ 

2 6 d.. T ., .... , ,C (3 17) 
(2 n + 1) .. < s ' .. • S T 'I 'n-2 TA" • 

transforms according to the (n, n) representation of 
SU(3): 

2[B", [B", Ti "'j ]] = 2n(n + 2)Ti "'i' 
1 n 1 n 

(3. 18) 

To det.ermine the effect of the Casimir commutator 
upon L we must multiply Eq. (3. 11) by d i , i' pdpi ; , 

. n n+l ft n+l 
sum over all values of in and in+ l' and then sum over all 
permutations of (i l '" in-li~i~+l)' In addition to Eqs. 
(3.5) and (3.9) we need an identity, namely 

2 6 (DaDbDc)"B 
allperms 

(ab c) 

= 6 [oab(Dc)"B + toa"dbcB + tOaBdbc,,]- dabco"B' 
c'p(abc) 

(3. 19) 
which can be proved by applying Eq. (3.15) to the double 
anticommutator 6 {Da,{Db,DcH. We then find that 

c'p(abc} 

2[B", [B", £]] = 2(n2 + n + 1)£ + 2M - t (n - 1)N, 
{3.20) 
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where 

M = L; L; d,. lid., T., .... , ,C (3.21) 
r<s<t c'p(rst) 'r's 't"l' '1 'n-2 11" I' 

and the summations in M involve ~ (n + 1) n( n - 1) 
terms corresponding to the permutations (irisit i I '" 
i~-2) of the original indices (i l .•• in'I)' 

Multiplying Eq. (3.16) by d i , i' i and using the same 
n jt+l n 

techniques as in the case of L, we have that 

2[Ba , [Ba,MJ] = 2(n2 + 2n - I)M 

+2(n-l)£'-~(n-l)N-8P, (3.22) 
where 

It follows from Eq. (3. 13) that 

2[Ba , [Ba,pll = 2(n2 - I)P. (3.24) 

Putting all of these results together we can show that 
the (n + l)th-rank tensor defined by 

T. ... = f _ 4(n + 2) £' 
'I in'l (n + 1) (2n + 3) 

2 M _ (2n2 + 6n + 7) N 
(n + 1) (2n + 3) 3(n + 1)2(2n + 3) 

+ 2 P 
(n + 1)2(2n + 3) 

(3.25) 

[where T, L,M, N, P are as in Eqs. (3.10), (3.12), (3.21), 
and (3.23)] is the desired eigentensor: 

2[Ba , [Ba , Ti ... i II = 2(n + l)(n + 3)Ti ... i • (3.26) 
1 n+l 1 n+l 

It is straightforward to demonstrate that 

T; ... , AA=dp).."T; ... ; )..,,=0 
1 n-l .. 1 n-l" 

(3.27) 

and so, as shown in the Appendix, the cubic Casimir 
operator has zero as its eigenvalue: 

(3.28) 

Thus T· •.. . transforms according to the (n + l,n + 1) 
'1 'n+l 

representation of SU(3). 

C. Some second· and third·rank tensors 

The simplest application of the formula for Til'" 'n'l in 
Eq. (3. 25) is to the case_n = 1, with the first-rank tensor 
T, being either B j or Bi • Since there are only two in-

1 1 1 A A 

dices available and the quantities M and P require at 
least three and four, respectively [see Eqs. (3. 21) and 
(3.23)], they do not come into play. The general formula 
then becomes 

(3.29) 

There are three basic choices for the pair of first-rank 
tensors (Ti ,C i ): 

1 2 

(Ti ,C i ) = (Bi ,Bi ): 
1 2 1 2 

(3.30b) 
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{ - -} 1 -Ti i = Bi ,B; + lii(2~2 - 3)di i pBp 
12 1 2 12 

(3.30c) 

where I is a unit matrix of appropriate dimenSions, ~ 2 

and ~3 are the eigenvalues of Eq. (2. 4), and use has 
been made of the identities of Eq. (2. 16) and (2. 18). 

When n = 2, the quantity M [see Eq. (3.21)] does contri::::. 
bute to the third-rank tensor T; i i of Eq. (3.25), but P 

1 2 S 
[see Eq. (3. 23)] still does not. The general formula for 
the tensor is given by 

(3.31) 

and there are four basic choices for the components 
from which T, I I is constructed. They are 

1 2 3 

(a) three Bi matrices: 

TEaL = L; BIBiB. -:; L; d'i BBi 
1 23 allperms 1 2 'a C'p(1

1
i

2
i s ) 1 2P P 3 

il i 2 i3 

- ~ L; d; i pEi Bp - ~ (~2 - 2) 
C'p(i

1
i

2
is ) 1 2 3 

xL; 0i i Bi - ~~3di i ; I; 
c'p 1 2 3 1 2 3 

(3. 32a) 

(b) two B; and one Bi : 

TEbl i = L; Bi E, B, 
1 23 allperms (i 1'2 i 3) 1 2 3 

(c) two Ei and one B i : 

(d) three E , : 
T~a.> . = L; E i E i E i 

'1'2'3 allperms 1 2 3 

(i 1'2 i 3> 

-~ L; d i i pdp)..I'B)..E, Ell 
C'p 1 2 3 

('I i 2 i3> 
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(3. 32d) 

As a check on these formulas, we note that in the tri
angular representation (/J., 0) they are all proportional to 

TH>, = z::; B;B; B; -~(2/J.+3) Z::;d;i pBpB; 
1 2 3 allperms 1 2 3 C'p 1 2 3 

(;1'2;3> 

+ ~ (3 - fJ.(fJ.+ 3» z::; 0" B; 
c.p 1 2 3 

+ -!s/l(/l + 3)(2fJ. + 3)d i ; i I. 
1 2 3 

(3.33) 

The first occasion on which the term P of Eq. (3. 23) 
contributes to the symmetric tensor of Eq. (3. 25) occurs 
when n = 3. In general there are five basic choices of 
~nsor corresponding to the different numbers of B i and 
B; matrices from which it may be constructed. For the 
triangular representation (/l, 0) they all reduce to 

- is (7/l2 + 21fJ. - 54) z::; OJ ; {B i' ,B;,} 
"'<5 ,.. s 3 4 

+ 6!O (2fJ. + 3)(48/l2 + 144/l- 25) z::; d. . . B. 
c.p '1'2'3 '4 

+ 1 (2/l + 3) (99/l2 + 297fJ. - 940) 
6 x 630 

x z::; d; ; A'i,Bp - 12~O (2fJ.+ 3)(21/l2 + 63/l+ 40) 
r<s 1'8 34 

+ 2~6fJ.(P + 3)(ll2 + 3ll- 18) z::; O. ·0., .,1, 
"<8 '.,..'s '3 '4 

(3.34) 
where (is, i4) denote the pair of indices remaining when 
(i .. , is) is removed from (i 1i 2i 3i 4). For other represen
tations the fourth-rank tensors are much more compli
cated, and we have not worked them out. 

D. Multiplicity of r:epresentations 

Since the symmetric tensors of rank n are constructed 
from some number, say r, of B IX matrices and a comple
mentary number (n - r) of B IX matrices, the largest 
number of independent tensors is (n + 1) corresponding 
to the number of ways of choosing r. In the case of the 
third-rank tensors, for example, there are four different 
forms [see Eq. (3. 32)]; for some representations all 
four will be independent of one another, and for others, 
such as the triangular ones, they will not [see Eq. (3. 33)]. 
Now each tensor can be used to pick out an SU(3) re-
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presentation (n, n) in the direct product of a basis vec
tor 1/1 .. and its adjoint ~ b [see Eq. (1. 6)]. Consequently 
the maximum number of times that (n, n) occurs in 
1/1 .. ® ~b is (n + 1). 

The best known example of this result is the octet (1, 1) 
which never occurs more than twice in 1/1 .. ® ~ b' and 
sometimes only once. The same is true for the general 
case: sometimes the maximum number is realized, and 
at other times it is not. Generally speaking, the repre
sentation (n, n) occurs a maximum number of times 
when 1/1 .. belongs to the SU(3) representation (p,q) with 
both p and q greater than or equal to n. 

4. CHARACTERISTIC EQUATIONS FOR TRIANGULAR 
REPRESENTATIONS 

If the basis vector 1/1 .. transforms according to the tr!: 
angular representation (fJ., 0) of SU(3) and its adjoint 1/1 b 

according to (0, ll), then the maximal representation con
tained in the direct product 1/1 .. ® ~ b is (ll, ll). Conse
quently, the tensor Ti ... ; of rank n = II + 1 correspon-

_ 1 n 
ding to the 1/1 .. ® 1/1 b state (fJ. + 1, fJ. + 1) must vanish 
when the B i matrices from which it is constructed be
long to the representation (fJ.,0). For the six-dimension
al representation fJ. = 2 and so the third-rank tensor 
vanishes; for the ten-dimensional representation II = 3 
and the fourth-rank tensor is zero. We now use these 
results to obtain the characteristic equations for B; be
longing to these representations. 12 

A. The six dimensional representation 

The third-rank tensor that must vanish is the one in 
Eq. (3.33) with II = 2: 

- z::; O· . B. + 2d. . . 1= 0 (4. 1) 
c.p '1'2 '3 '1'2'3 • 

We introduce the octet vector Wi (i = 1,2, ... ,8), define 
the quantities12 

II; = d ij k W j W k , X = wi Wi' Y = d ij k W i W j W k' 

(Bw) = (Btw), (BII) = (BiIIi) (4.2) 

and then multiply Eq. (4. 1) by w. w. w. to obtain 
'I '2 '3 

6(Bw)3 - 9(Brr) (Bw) - 3X(Bw) + 2YI = 0 

or, equivalently, 

9(BII)(Bw) = 6(Bw)3 - 3X(Bw) + 2YI. 

(4.3a) 

(4.3b) 

Next we multiply Eq. (4. 1) by II i w; wi and make use of 
the results 1 2 3 

dijkWjIIk = tXw k 

to obtain 

6(B1r)2(BII) - 2X(Bw)2 - 3(BII)2 

(4.4) 

- 2Y(Bw) - X(Brr) + tX2I = O. (4.5) 

Finally, we multiply Eq. (4. 5) by (Bw)2 and eliminate 
(Brr) with the aid of Eq. (4. 3b);we find that the matrix 
(Bw) satisfies the equation 

36(Bw)6 - 45X(Bw) 4 - 21Y(Bw)3 + 9X2(Bw)2 

+ 3XY(Bw) - 2y2I = O. (4.6) 

To check that this is the correct eigenvalue equation for 
(Bw) we consider two special cases. When 1T i is a so-
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called s vector13 (X = 1, Y = 0), (B7T) behaves like the 
z component of isospin and it should have an eigenvalue 
spectrum corresponding to the isospin content T = 0, t, 
1 of the l3ix-dimensional representation. Setting X = 1, 
Y = 0 in Eq. (4. 6), we can rewrite it in a form 

9(B7T)2(4(B7T)2 - 1) [(B7T)2 - 1] = 0, (4.7) 

which indicates that its roots are 0 (twice), ± t, ± 1, and 
so it does indeed have the correct spectrum for the s 
vector case. 

When 1Ti is a q vector13 (X = 1, Y = - 183) the matrix 
Q == (2/V'3) (B7T) behaves like a hypercharge operator and 
in the six-dimensional representation it must have a 
spectrum corresponding to the relation T = i + tQ. 
Setting X = 1, Y = - 1/../3 in Eq. (4. 6) we obtain an 
equation, namely 

(3Q)6 - 15(3Q)4 + 14(3Q)3 + 36(3Q)2 - 24(3Q) - 32 = 0, 
(4.8) 

which after some manipulation reduces to one with the 
desired eigenvalue spectrum: 

(3Q - 2)3(3Q + 1)2(3Q + 4) = o. (4.9) 

Thus Eq. (4. 6) behaves like the characteristic equation 
for six-dimensional B i matrices in the special cases of 
s and q vectors, and so we can be confident that it is in
deed the characteristic equation for the general case. 

B. The decuplet 

For the decuplet the vanishing fourth-rank tensor is a 
special case of Eq. (3. 34) with J.l. = 3. We follow the 
same procedure as above and multiply the tensor first 
by 1T i 7T i 7T i 1T i and then by 1T i 7T t 7T i 1T i • This gives 

1234 1234 
us two equations, namely 

4(B7T)4 + 3(Bn)2 - 12(B1T)2(BIl) 

- 4X(B1T)2 + 6Y(B1T) + 3X(Bn) = 0, (4. 10) 

4(B1T)3(BIl) - 2X(B1T)3 - 6(BIl)2(B1T) - 2Y(B1T)2 

- X(B1T)(BIl) + 3Y(BIl) + 2X2(B7T) = 0, (4.11) 

which, as we have shown elsewhere,12 yield an equation 
of tenth degree for (B1T) when (Bn) is eliminated from 
them. With X = 1, lay = sin~, this equation is 

(B7T) [(4(B1T)3 - 3(B1T»2 - 1 + 3y2] 
x [4(B7T)3 - 9(Bw) - 9Y] = 0 (4.12) 

and it has the correct spectrum of eigenvalues for the s 
and q vector cases. Thus Eq. (4.12) is the characteris
tic equation for matrices belonging to the triangular 
representation (3,0) of SU(3). 

It is evident from the examples of the 6- and 10-dimen
sional representations that we can obtain the charac
teristic equation for any triangular representation (J.l., 0) 
by setting the symmetric tensor of rank (J.l. + 1) equal to 
zero, and then multiplying it by products of the octet 
vector 1T i' Products involving the dual vector, for ex
ample B'Il, can be eliminated with the aid of identities 
like Eq. (4. 4) and other techniques used above. The re
sulting equation for (B'7T) will be valid in the special 
cases in which 1T i is either an s or a q vector, as well 
as in the general case when it is neither one nor the 
other. 

5. SELF-ADJOINT REPRESENTATIONS 

At the end of Sec. 2 we pOinted out that in self-adjoint 
representations (J.l.1 = J.l.2 = J.l.) the matrices B a can ., 
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always be chosen to be antisymmetric, and their duals 
Ba to be symmetric. We shall now illustrate how this 
fact can be used to deduce other properties of the ma
trices by considering the special case of the (27)
dimensional representation. 

In general we can represent the basis vectors of self
adjoint representations by symmetric tensors with ex
actly the same properties as the tensor operators con
structed from SU(3) matrices 7 [see Eqs. (3.1) and (3.5)]: 

(5. 1) ~A==~j j ... j =t/l j j '''i' 
1 2 " 2 1 Il 

where 

t/ljli2'''jr2n = dall}t/ljl'''ir2IlY = O. (5.2) 

For the (27)-plet there are two such indices (J.l. = 2), and 
for the (64)-plet there are three (/J. = 3). 

Let us form the direct product ijI B 1)9 t/l A in which both 
basis vectors transform according to the (27)-dimen
sional representation, and let us pick out the (64)-plets 
contained in it. Since we require tensors with three in
dices, we can construct them from two basic elements, 
namely 

(5.3) 

where the sum is carried out to symmetrize the pro
ducts with respect to the indices (k, i2,j2)' Because the 
f and d coefficients are respectively anti symmetric and 
symmetric under the permutation of their indices, the 
(64)-piet (iji B 1)9 ~ A)(F) is anti symmetric under the in-
te rchange of iii B and t/l A , and (iji B 1)9 t/l A ) (D) is symmetric. 

An alternative way of constructing these (64)-plets is to 
form the third-rank tensors Ti i ; from the SU(3) ma-

l ~ 3 
trices and then sandwich them between the states of the 
(27)-piets ijI B and ~ A' Now as shown in Eq. (3. 32), there 
are four such tensors; in the self-adjoint case, two of 
them, (3. 22a) and (3. 32c), are anti symmetric, and the 
other two (3. 32b) and (3. 32d) are symmetric. But we 
have just shown that in the product of two (27)-plets 
there are only two (64)-plets, one symmetric and the 
other antisymmetric. Therefore, the two anti symmetric 
tensors from Eq. (3. 32) must be proportional to one an
other, and likewise for the two symmetric ones. To 
compute the coefficients of proportionality we multiply 
the anti symmetric tensors by B; BiB; ,and the sym-

- 1 2 3 . • 
metric ones by Bi BiB i • After much manIpulatIon we 
find that 1 2 3 

(5.4) 

when the B; and Bi matrices belong to the (27)-dimen
sional representation. 

To generalize this result, we note that when ~ A belongs 
to the (/J., /J.) representation its direct product with its 
adjoint ijI B contains the representation (2/J. - 1, 2J.l. - 1) 
only twice, once in symmetric form and once in anti
symmetric form. However, there are 2J.l. distinct tensors 
Ti .... of rank (2/J. - 1), and in the self-adjoint case 

1 ~ 2,,-1 
half of them are symmetric and the other half antisym-
metric. Obviously then, the symmetriC ones must be 
proportional to one another when the B i are in the (/J., J.l.) 
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representation and so must the anti symmetric ones. 
The computation of the coefficients of proportionality 
is, however, an extremely tedious affair. 

In conclusion, we note that similar arguments ~an also 
be applied to lower rank tensors contained in 1/1 B ® 1/1 A' 

In the particular case of the (27)-plet, we learn nothing 
new from this, but for other representations we do. 

6. CALCULATION OF TRACES 

As a final application of our results we use them to 
compute the traces of products of SU(3) matrices be
longing to an arbitrary representation. We show that the 
traces of both the symmetric tensors of Sec. 3, and of 
certain other tensors must vanish; then by working our 
way through the second- and third-rank tensors, we are 
able to compute the traces of products of two, three, and 
four matrices. We can handle larger products in a 
similar way, but we shall not do so here. 

A. General 

Because the trace of the product of any two matrices is 
independent of their order, the trace of their commuta
tor must vanish: 

Tr([ G, H]) = O. (6.1) 

Therefore, it follows from the commutation rule for two 
B matrices [see Eq. (1. 1)] that 

Multiplying by ifkBa and using the property [see Eq. 
(2. 7)] 

if ket/l if et8y = 31i ky' 

(6.2) 

(6.3) 

we find that the B matrices themselves must be trace
less. Similarly, the trace of Bk must also be zero. Thus, 

Now consider a symmetric second-rank tensor Tij 
which satisfies the commutation rule 

(6.4) 

(6.5) 

If we multiply both Sides by if kiH,' and make use of the 
symmetry of Tij as well as Eq. ~6. 3), we obtain 

(6.6) 

With the aid of Eqs. (1. 9) and (3. 15) for {F i ,F 8} and 
the general properties [see Eq. (3. 5)] 

T 88 = d kafj Tail = 0, 

we can reduce Eq. (6. 6) to 

ifkia[B a , Tij] = 4T kj • 

Consequently, the trace of T kj vanishes: 

Tr(T k) = O. 

(6.7) 

(6.8) 

(6.9) 

It is not difficult to see that this argument applies to a 
symmetric tensor of any rank, and so we have 

Tr( T; i ... i ) = 0 
1 2 n 

(6. 10) 

as long as Ti i .. , i satisfies Eq. (3. 5). 
1 2 n 
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Suppose next that 8iJ is an antisymmetric tensor which 
obeys the commutation rules 

[Ba,Sjj] == ifaisS/lj + ifajSSi/l 

and the subsidiary conditions 

(6. 11) 

(6. 12) 

The second condition ensures that 8 jj contains no octet 
component, and so it is some combination of the (10) and 
(10*) representations. If we multiply both sides of Eq. 
(6.11) by if kia and make use of the anti symmetry of 
Sij' we find that 

(6. 13) 

From the commutation rule for F-matrices and the sub
sidiary condition of Eq. (6. 12), we obtain 

ifkia[Ba,Sjj] == 3S kj 

and hence 

(6. 14) 

(6. 15) 

This argument can be combined with the previous one 
for symmetric tensors to show that the trace of a ten
sor of rank m and with mixed symmetry will vanish as 
long as it obeys all subsidiary conditions like those in 
Eqs. (3. 5) and (6. 12). These subsidiary conditions 
serve to limit the irreducible representations occurring 
in the tensor, but from our point of view their important 
effect is to ensure that the tensor contains no SU(3) 
Singlet. Since the singlet always commutes with the B i 
matrices, its trace need not vanish, and in fact it does 
not. All SU(3) singlets are proportional to the unit ma
trix and their traces are proportional to the dimensions 
of the representation being studied. Thus any tensor 
containing a Singlet will have nonzero trace, while the 
trace of any tensor not containing a singlet will always 
be zero. 

We emphasize this point because we find it useful to 
apply it to products of symmetric tensors T j ••• j with _ 1 n 

matrices B j and B j' For n ,.greater than or equal to two 
the product T j ••• j B j (or B'j) does not contain an SU(3) 

1 n 
singlet and so its trace must vanish; the same is true of 
the product Til'" in B jB j' as long as n ~ 3, and so on. 
This provides us with a useful labor-saving device in 
practical calculations. 

B. Products of two matrices 

The three basic second-rank tensors are given in Sec. 
3C. Setting the trace of the tensor in Eq. (3. 30a) equal 
to zero, we obtain 

Tr(BiB j ) == liiml2DOiJ' (6.16) 

where D is the dimension of the representation (/.1.1' /.1.2) 
given in Eq. (2. 5), and ml2 is the Casimir eigenvalue of 
Eq. (2. 4). Similarly, from Eq. (3. 30c) we obtain 

(6. 17) 

Setting the trace of Eq. (3. 30b) equal to zero, we find 
that 

(6.17') 

Now (B jB j - B .B i) is an anti symmetric tensor which 
contains octet, dO), and (10*) components but no singlet; 
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consequently its trace vanishes. We therefore conclude 
from Eq. (6. 17) that 

(6. 18) 

C. Products of three matrices 

The simplest way of computing the traces of three ma
trices is to observe that, since the direct products 
T jj B" and Tij B" contain no SU(3) singlets, their traces 
are zero. Taking the second-rank tensor of Eq. (3. 30a) 
times B" and using Eq. (6.18), we find in this way that 

(6. 19) 

But 

Tr[[BpBj]B k] == ifiil Tr[BlBk ] == iemt 2Diftik (6.20) 

and so 

Tr(BjBjBk ) == 1~ (-tmtadjjk + tmt2ifjjk)' (6.21) 

In a similar way we obtain 

- D 1 . 
Tr(BjBjBk ) == 32 (lomt 2(2mt 2 + 3)djj " - mta zfijk) 

(6.22) 
from the product of Eq. (3. 30a) withB". 

If we take Tij. to be the tensor of Eq. (3. 30b) and multiply 
it by Bk , we nave 

- - - - D Tr(Bj B kB, + B j BkBj ) == - 160 mta(2mt 2 + 3)d jjk • 
(6.23) 

If we take T; /I to be the tensor of Eq. (3. 30c) and multi
ply by B t , we find that 

Subtracting Eq. (6. 23) from (6.24), we have 

Tr(BjBkEt ) == Tr(BtEjEk ) 

and so we can rewrite Eq. (6. 23) as 

Because 

(6.25) 

(6.26) 

Tr[[BpBj]B/I] == ifijl Tr[B1B,,] == 1~ mt 2(2mt 2 + 3)ifjj ", 

we conclude that 
(6.27) 

- - D . ) Tr(BtBjB,,)== 1920(2mt 2 + 3)(- 6mtadjj/l + 5mt2Zfjj/l . 
(6.28) 

To determine the trace of three E-matrices, we multiply 
the tensor of Eq. (3. 3Oc) by B /I; thus 

Tr[{BpBj}B .. ] == 1~0 (48mt~ - mt2(4mt~ - 9»djj ". 
(6.29) 

Now 

Tr[[BpBj]B,,] == d;aBifBip Tr[(BaBp + BpBa>B/I] 

and from Eqs. (6. 24) and (2. 15), this becomes 

Tr[[BpBj]B/I] == - 1~2 mlaC2ml 2 + 3)ifij /l' (6.30) 
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Therefore, we have 

Tr(BiBjB,,) == 3~0 {(48ml~ + 9mt 2 - 4mt~)dij/l 
-10mt a(2c.m 2 + 3)ifij /l}' (6.31) 

This completes the calculation of traces of products of 
three SU(3) matrices and we turn to products of four 
matrices. 

D. Products of four matrices 

We can calculate the traces of products of four SU(3) 
matrices eith~r by noting that the traces of Tij /I times 
either B I or B I vanish when T ij k is anyone of the sym
metric tensors in Eq. (3. 32), or by using the following 
result due to Dittner. 

Dittner14 has shown that the most general fourth-rank 
tensor of SU(3) is a linear combination of eight terms, 
namely 

Rjjkl == a6;j6k1 + b6 U 6jl + c6;z6 j " + adjjpdlllP 

+ fj d; k P djlp + ">I.dijpifj lip + /ldupdj11' + II d;lpifj III" 
(6.32) 

Therefore, the trace of the product of any four matrices, 
B,B;BIIBI' for example, must be of the general form 
given in Eq. (6. 32). To compute the coeffiCients a, b, .•. , 
II we contract both sides with SU(3) coeffiCients like 6 jj , 
dj 110' if 1110 and then use the results of the previous sec
tions for the products of two and three matrices. This 
method is somewhat more straightforward than the other 
one, but it involves just as much tedious algebra. 

We shall not give the details of computation, but instead 
we quote the results for the coefficients of the right
hand side of Eq. (6. 32). 

They are: 

Tr(BiBjB"B l ): 

mt2 
a == c == 960 (3c.m 2 + 7)D, 

a == 0, 
mt2 

fj == - 32 D, 

Tr(BiBjBkE I ): 

c.ma 
a == c = - 960 (3mt 2 + 7)D, 

c.m2 
b == 960 (3mt 2 - 13)D, 

3 
">I. == J1. == II == - 160 mta D; 

(6. 33a) 

c.ma 
b == - 960 (3c.m 2 - 13)D 

D 
a == 0, 

mta 
f3 == 32 D, A == f.L == II == 640 c.m 2(2 mt 2 + 3); 

Tr(BiBj BkE l ): 
(6. 33b) 

a == 1~0 (- ~It~ + 2~ c.m 2(2mt 2 + 3)(llmt 2 + 21») , 

b == 3~0 (c.m~ + 9~ mt 2(2mt 2 + 3)(mt 2 - 39»), 

c == 3~0 (mt~ + 9~ mt 2(2mt 2 + 3)(mt2 + 21») , 

a == 2~0 (mt~ - {2 mt~ (2mt 2 + 3») , 

f3 == - 3~4 mti2mt2 + 3), 

D 
">I. == f.L == II == - 640 mta(2mt2 + 3); (6. 33c) 
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Tr(B iEj EkE I): 

a = c = - 12 ;> 960 ~3(2~2 + 3)(3~2 + 7), 

b =-12 ;>960 ~3(2~2 + 3)(3~2-13), 
D 

a = 0, f3 = 384 ~3(2~2 + 3), 

i\. = II = 3~0 (~~ + t~2(2~2 + 3», 

IJ. = 3~0 (3~~ - 2~ ~2(2~2 + 3)(4~2 - 3») ; 
(6. 33d) 

Tr(E, Ej EkE I): 

D 
a = c = 2880 

x(~~ + i8 ~2(2~2 + 3){6~~ + 19~2 + 21)), 

D 
b = 2880 

X(l1~~ + i8 ~2(2~2 + 3)(6~~ - 61~2 - 39»), 

a = 0, 
D 

{3 = - 240 

x (~~ + 9~ ~2(2~2 + 3)(2~2 + 15»), 

D 
~ = IJ.= II =- 8 x 960 ~3(2~2 + 3)2. (6. 33e) 

These results are valid for any representation (j.LI' 1J.2) 
and as far as we know at this point, they are new ones. 

7. SUMMARY AND CONCLUSIONS 

We have completed the program set forth in the intro
duction and we hope that by now the reader is convinced 
that a knowledge of the Clebsch-Gordan series for the 
basis vectors 1/1 a ® ~ b enables us to determine many 
properties of the matrices B i belonging to the appropri
ate representation of SU(3). The particular examples 
we have used are by no means exhaustive, but they do 
illustrate the power of our method and the ways in which 
it may be applied. Other examples may, of course, re
quire some variation in the approach. I5 

Besides specific results such as the characteristic 
equations for the six- and ten-dimensional representa
tions [see Eqs. (4. 6) and (4. 12)] and the relationships 
among matrices of the (27)-dimensional representation 
[see Eq. (5. 4)], there are several results of a general 
nature. The first is the formula for the (n + 1)-rank 
symmetric tensor T; I •.• i constructed from the n-

1 2 n+l [ rank tensor T i ; •.• ; and an octet C)" see Eq. (3. 5)]. 
1 2 n 

Another is the fact that the representation (n, n) occurs 
at mostj n + 1) times in the direct product of 1/1 a and its 
adjoint 1/1 b (see Sec. 3D). When B, belongs to the triangu
lar representation (j.L, 0) the symmetric tensor of rank 
(IJ. + 1) constructed from products of B matrices must 
vanish identically (Sec. 4B); and when B, belongs to the 
self-adjoint representation (j.L, 1J.),only two of the 21J. 
tensors of rank (2/J - 1) constructed from B i and 13 j are 
independent [see Sec. 5 below Eq. (5. 4)]. The formula 
for T; i .•• ; does not depend on our remark about the 

1 2 n+l _ 
Clebsch-Gordan series for 1/1 a ® I/Ib, but it does provide 
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the basic tool for applications; this is also true of our 
trace calculations in Sec. 6. 

In conclusion, we note that the general observation upon 
which our work is based, namely that matrices repre
senting the algebra of SU(3) also serve as Clebsch
Gordan coefficients for the group, is valid not only for 
SU(3), but for all other Lie algebras. Consequently, we 
can apply the approach to many other groups. 
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APPENDIX: THE CUBIC CASIMIR OPERATOR 

We wish to show that the conditions of Eq. (3. 5) ensure 
that the symmetriC tensor T, ... , has zero for its 

1 n 
eigenvalue of the cubic CaSimir operator. We begin by 
considering a tensor of rank one, namely an octet: 

d"be[B", [Bb' [Be' Cd]] = d"be ifel >,. ifbAp.ifap.uCv 

= Tr(F,Fp.D,,)if"ll uCv 

= jd'llaifallvCu 

= O. (AI) 

The last two lines are consequences of Eqs. (2. 10) and 
(2.15), respectively. 

When we apply the Casimir operator to a second- rank 
tensor T Ij we encounter two types of terms. In one type, 
all three B matrices act upon the index in one fixed 
pOSition; and in the other, two of the B matrices act upon 
the index in one position, and the third matrix acts upon 
the index in the other position. The first type vanishes 
by virtue of the argument in Eq. (AI), and the typical 
term of the second type is 

d"be ifc,>" ifbAif"ju T llu 

= Tr(F,Fp. D,,) ifaju Til u = jd'p.aif"jvTp.v' (A2) 

Because TjJv is symmetriC under j.L+-+ II, and because the 
f and d coefficients satisfy the Jacobi identity of Eq. 
(2.2), we can write the right-hand side of Eq. (A2) as 

t(d'll"if"ju + d,uaif"jp.)Tllu= ifij"d"IlUTllv = 0, (A3) 

where the second step is an immediate consequence of 
Eq. (3. 5). Thus the second type of term also vanishes 
and so we have the general result 

(A4) 

In the case of a third-rank tensor T i k' the Casimir 
operator gives rise to three types oYterm: the two 
types already encountered in the second-rank case, and 
a third in which each B-matrix acts on an index in a 
different position. Since the first two have already been 
shown to be zero, we need only consider the third type, 
a typical term being: 

d"bC ife;).. ifbjifakuTAjJu 

= - (F>,.D"FjJ );jifakIlT)..jJlI 

= - (FA [D /" F u]F p.);j TAP. II 

= H({FA,F II } DkFp.);j- (F>,.Dk{Fv,Fp.})'j]T>,.p.u, 
(A5) 
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where we have used the symmetry of TJo..Il/) under permu
tations of its indices to obtain the last line of Eq. (A5). 
From the identity [see Eqs. (1. 9) and (3.15)] 

(A6) 

and the conditions of Eq. (3. 5), the Eq. (A5) becomes 

- -HO"i (Dv F Il ) kj + 0vi (DJo..F /1) kj - 0/1j (F ilDV)ik 

-Ovj(FJo..D/1)ik]TJo../1v' (A7) 

Because T A/1 v is symmetric under the exchange of fJ. and 
II, we can rewrite the first term in the square bracket as 

- tOAi[t(DvF,,)kj + t(D/1F v)kj]TA/1v 

and then use the Jacobi identity of Eq. (2. 2) to rewrite it 
as 

(AS) 

Similarly, the other three terms in Eq. (A 7) are all zero, 
and so we conclude that all terms of the third type are 
also zero. Therefore, we have 

(A9) 

When we apply the Casimir operator to tensors of rank 
greater than three we do not encounter any new types of 
term, and so the arguments given above can be used to 
show that 

(AI0) 
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for any symmetric tensor obeying the conditions of Eq. 
(3.5). 

·Supported in part by the U.S. Atomic Energy Commission. 
tpresent address: Department of Theoretical Physics, 12 Parks Road, 

Oxford, England. 
1M. Gell-Mann and Y. Ne'eman, The Eightfold Way (Benjamin, New 

York, 1964). 
2We use the standard definition of the F and D matrices: 

(F, )jk = - iJijk' (D; )jk =dijk' 
3D. S. Carlstone, S. P. Rosen, and S. Pakvasa, Phys. Rev. 174, 1877 

(1968); V. I.Ogievetskii and I. V. Polyvarinov, Yad. Fiz. 4, 853 (1966) 
[Sov. 1. Nucl. Phys. 4, 605 (1967)]; L. M. Kaplan and M. ResnikofT, 
1. Math. Phys. 8, 2194 (1967); A. 1. Macfarlane, A. Sudbery, and P. 
H. Weisz, Commun. Math. Phys. 11,77 (1968); Proc. R. Soc. A 
314,217 (1970). 

's. Gasiorowicz, Argonne National Laboratory Report, ANL-6279, 
1963; S. P. Rosen, 1. Math. Phys. 5,289 (1964); S. Okubo (private 
communication, 1963). 

5S. Okubo, Prog. Theor. Phys. 27,949 (1961); B. Diu, Nuovo Cimento 
28,466 (1963); 1. Ginibre, 1. Math. Phys. 4, 720 (1963). 

6A. McDonald and S. P. Rosen, Phys. Rev. D 4, 1833 (1971). 
7R. E. Behrends, 1. Dreitein, C. Fronsdal, and B. W. Lee, Rev. Mod. 

Phys. 34, I (1962). 
8To obtain this result from S. P. Rosen (Ref. 4) set Bt= -:I~_I 

CA.;)~vBj . 
9M. Hamermesh, Group Theory (Addison-Wesley, Reading 

Massachusetts, 1962), pp. 138-41. 
IOL. C. Biedenharn, 1. Nuyts, and H. Ruegg, Commun. Math. Phys. 

2, 231 (1966). 
"C. M. Andersen, 1. Math. Phys. 8,988 (1967). 
12S. P. Rosen, 1. Math. Phys. 12, 673 (1971). 
13L. Michel and L. A. Radicatti, "The Geometry of the Octet" (to be 

published). 
I.p. Dittner, Commun. Math. Phys. 22,238 (1971); Commun. Math. 

Phys. 27,44 (1972). 
15M. M. Nieto, Phys. Rev. 140,434 (1965); Phys. Rev. 149, 1294 

(1966); P. Carruthers and M. M. Nieto, Ann. Phys. (N.Y.) 51, 359 
(1969). 



                                                                                                                                    

On the radial wave equation in Schwarzschild's 
space-time 
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The radial factor of a separable solution of the wave equation in Schwarzschild's space-time satisfies 
a second-order linear differential equation. This equation is studied in detail. The behavior of the 
solutions near the singular points (the origin, the horizon, and infinity) of the equation is analyzed. 
By an appropriate transformation two simpler differential equations are obtained corresponding to 
retarded and advanced solutions with characteristic asymptotic expansions. Their properties permit 
the expression of the general solution of the radial equation in terms of a single contour integral. 
Finally, through a "matching" technique, the behavior of a solution at the singular points is 
determined from its behavior at a single singular point. 

1. INTRODUCTION and advanced solutions in Schwarzschild's space-time 
(see Sec.4). Moreover, the formulas presented in this 
section will help in demonstrating the correspondence 
between the flat-space and the Schwarzschild-space 
solutions. 

In flat space-time the metric tensor in spherical co
ordinates is 

gjlll = diag[c 2, -1, -r2, -r2 sin28], 

and the scalar wave equation 9 

(1 ) 

(2) 

In curved space-times the detailed mathematical study 
of the wave equation must precede any systematic in
vestigation of wave phenomena, exactly as in flat space
time. However, even in the simple space-time of 
Schwarz schild, separation of variables in the wave 
equation leads to a second order linear differential 
equation, the radial wave equation, which is not related 
to any known differential equation of mathematical 
physics. Expression of the solution in closed form is 
not possible. Even methods containing infinite stepsl.2 
have not given satisfactory expressions and have raised 
unanswered questions of convergence. In fact, the solu
tion of the radial wave equation has not gone essentially 
beyond the stage of writing down the differential equa
tion. l .3 In all physical problems, which lead to the 
radial wave equation3 •4 •5 (or similar second order 
differential equations6•7), techniques of "effective poten
tial" tailored to the speCific requirements of the prob
lem have been used. 

is separablelO (the semicolon denotes covariant differ
entiation) . 

In this paper we set and reach a limited objective, that 
is, the investigation of those properties of the solutions 
which are essential for the study of time-dependent 
wave phenomena around a Schwarz schild black hole. 
These essential properties of the solutions can be con
sidered in two groups. The first group concerns the 
behavior of the solutions at the origin of the coordinate 
system and the horizon of the black hole. It is inti
mately related with the radiation of multipole mo
ments4 .8 and the possibility of destruction of the black 
hole. The second group concerns the behavior of the 
solution at. infinity, the retarded and advanced contribu
tions to the wave solUtion, and is related to the obser
vations of a distant observer. 

In Sec. 2 we review briefly the radial wave equation in 
flat space-time. In Secs. 3 and 4 we consider the radial 
wave equation in Schwarzschild's space-time, and we 
study the behavior of the solution at the origin and the 
horizon (Sec. 3) and at infinity in terms of retarded 
and advanced solutions (Sec. 4). In Sec. 5 we derive cer
tain linear relationships among the characteristic solu
tions of the differential equation. These relations en
able us to find the behavior of a solution near a singular 
point from its behavior near another singular point. 

2. THE RADIAL WAVE EQUATION IN FLAT SPACE-
TIME 

We present briefly the solution of the radial wave equa
tion in flat space-time in a way which avoids the use 
of Bessel functions. The method of solution will indi
cate the generalization needed to derive the retarded 
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If 
>It = R (r)Y(8, cp )e- iwt, 

then Y(8, cp) is a spherical harmonic and R(r) satisfies 
the equation 

(3) 

d2R dR r2 - + 2r - + [k2r2 -1(1 + l)]R = 0, (4) 
dr 2 dr 

where k = wlc. 
A change of the dependent variable to rl/2R will give 
a Bessel equationlO of fractional order. However, we 
can avoid the Bessel functions. If we set 

R(r) = efixF±(x), 

where x = kr, Eq. (4) reduces to 

(5) 

d 2F ± dF ± 
x 2 -- + 2(x 'f ix 2 ) - + ['f 2ix -l(l + l)]F ± = O. 

dx
2 

dx (6) 

This equation has an irregular singular point at x = + 00, 

but we can obtain closed-form solutions (one F+ and 
one FJ, which are polynomials of x-l of degree 1 + 1. 
In fact, we havell 

I (1 + n)! 
F/i = (±i)l+lx-l L; (± 2ix)-", 

..=0 (l - n)!n! 

with F,.- corresponding to retarded waves and F l + to 
advanced waves. Usually we consider the two linearly 
independent combinationsl2 

jl = i(eixFl _ + e-ixFIJ (8) 

and 
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which are finite at r = 0 and r = + 00 respectively. 

In Sec. 4 a generalization of transformation (5) will 
result in equations similar to Eq, (6). 

3. THE RADIAL WAVE EQUATION 
IN SCHWARZSCHILD'S SPACE-TIME 

We consider now the wave equation (2) in Schwarzs
child's space-time with metric tensor 

(9) 

g/lV = diag[ (1 -;) c2, -(1 -;yl, -r2, -r2 sin2e]. 
(10) 

where rs is the Schwarz schild radius (a constant related 
to the mass M by the relation rs = 2 GMc-2). 

Assuming a solutionl3 of Eq. (2) of the form (3), we have 
for R(r) the radial wave equationl4 

x(x - x )2 d
2
R + (x _ x ) (2x _ x ) dR 

s dx2 s s dx 

+ [x3 -1(1 + O(x -xs)]R = 0, (11) 

where 

(12) 

Eq. (11) has two regular singular pOintsl5,l6 at x = 0 
and x = Xs and an irregular singularl7 point at x = + 00. 

A. Behavior near the origin 

In the neighborhood of x = 0 we try a power series of x 
as a solution of Eq. (11). The indicial equation has a 
double root equal to zero and, consequently, two linearly 
independent solutions arel7 

00 

CR l (x) = L; a"x" 
n=O 

and 

CR 2(x) =(po anx~ lnx + Eo bnx". 

Substituting these expressions into Eq. (11), we find 
that an and bn satisfy the recurrence relations 

n2x;a" + (l(l + 1) - (n - 1)(2n - l)]xsan-l 

(13) 

(14) 

+ [(n - l)(n - 2) -1(1 + 1)]a,,_2 + an-4 = 0 (15) 

and 

n2xs2b" + [1(1 + 1) - (n - 1)(2n - l)]xsbn_l 
+ [(n - l)(n - 2) -l([ + 1)]b,,_2 + bn-4 
+ 2nxs2an - (4n - 3)xsan_1 + (2n - 3)a,,_2 = O. 

The coefficients a o and b 0 are not specified by Eqs. 
(15) and (16) and have to be chosen arbitrarily. We 

(16) 

must choose ao '" 0; otherwise CR1 (x) == 0 (trivial solu
tion. lS Any arbitrary pair (a o' bo) with ao '" 0 will give 
two linearly independent solutions. We choose ao = bo = 
1, thus making CRl(x) and CR 2 (x) particular solutions 
of Eq. (11). The general solution of Eq. (11) is an arbi
trary linear combination of CR l (x) and CR 2 (x). 

The series in Eqs. (13) and (14) converge for x < Xs 

(x = kr > 0). Hence, there is one solution finite at the 
origin [expression (13)], which can be regarded as 
"physically preferable."l9 
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B. Behavior near the horizon 

We consider the solutions of Eq. (11) in the neighbor
hood of the other regular singular point x = xs' Expand
ing in powers of x - xs ' we obtain an indicial equation 
with roots ± ixs ' Consequently, two linearly independent 
solutions are 

CR 3(x) = euslnlx-xsl f; c,,(x _xs)n (17) 
,,=0 

and 
CR

4
(x) = e-ixslnlx-xs/ f; d,,(x -x.)", (18) 

.. =0 

where 

(n + 2ixs )nxscn + [(n + l)(n -1-1) 

+ 2x;- + (2n - 1)ixs]cn-l + 3xsc,,_2 + c,,_3 = 0 (19) 

and 

(n - 2ixs )nxsd" + [(n + l)(n -1 -1) + 2xs2 

- (2n - l)ixs]d,,-l + 3xsdn-2 + d,,_3 = o. (20) 

The coefficients Co and do must be different than zero,lS 
but are otherwise arbitrary. We choose Co = do = 1. 
Thus, CR 3 (x) and CR 4 (x) are particular solutions of Eq. 
(11) and the general solution is an arbitrary linear 
combination of them. 

From expressions (17) and (18) we derive two impor
tant properties of the solutions of Eq. (11). First, every 
solution remains bounded on the horizon r = rs (and, 
consequently, every solution is "physically accept
able" 19). Second, no solution goes to zero as r -7 rs' 
The proof of these properties is Simple, since near 
x = Xs any .solution behaves as A(x - xs)ixs + 
B(x - Xs f'xs, which remains absolutely smaller than 
IAI + IBI and does not have a limit as x -7Xs' 

The importance of these two properties is due to the 
factS that they are intimately connected with the pos
sibility of destruction of the black hole and the radia
tion of higher multipole moments during the fall of a 
small scalar particle into the black hole. 

4. RETARDED AND ADVANCED SOLUTIONS AT 
INFINITY 

We ask now for a generalization20 of transformation 
(5), which will "separate" the retarded and advanced 
solutions of Eq. (11). Two remarks indicate the gene
ralization. First expressions (17) and (18) indicate that 
a factor e± Us 1n/x-xs/ should be removed from R. Se
cond, the retarded (advanced) solution would have been 
reached, if we had worked from the beginning in a re
tarded21 (advanced) coordinate system. This means 
that a factor e- iwu would have been removed from >Ii 
instead of e- iwt• Hence the new transformation is 

(21) 

Obviously, for Xs = 0 we have again Eq. (5). 

Replacing Rz± in Eq. (11) we find two equations satis
fied by Fl + and Fl -, respectively. At this point the con
sideration of complex values for the independent vari
able appears to be useful. If FI(Z,xs;~) is a solution of 

d 2Fz dFz 
z(z -x) -- + (- ~z2 + 2z - x) -

s dz 2 s dz 

- [£2 + 1(1 + 1)]Fz = 0, (22) 
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then 

(23) 

namely, Eq. (19) for z == x gives the differential equa
tions for FI + (f = 2 i) and F1_ (f == - 2i). Note also that 
for Xs = 0 we rediscover Eq. (6). 

The solutions of Eq. (22) present the following impor
tant property. If F1(z,xs ; f) is a solution of Eq. (22), 
then 

(24) 

is also a solution. This property can be proved easily 
by substituting expression (24) into Eq. (22). 

We will express now the retarded and advanced solu
tions as contour integrals. According to the theory of 
contour integration15.16 of ordinary linear differential 
equations, the integral 

(25) 

will be a solution of Eq. (22), if G1(w) satisfies the equa
tion22 

d 2G dG 
w(w - f) -- + (x w 2 + 2w - f) -

dw2 s dw 

+ [xsw -1(1 + l)]G = o. (26) 

The contour C consists of a straight line parallel to the 
real axis from Rew ::::: - 00 to W = 0 (or w = f), a circle 
around w == 0 (or w ::::: f) described positively, and a 
straight line also parallel to the real axis from w = 0 
(or w = f) to Rew = - 00. At w = 0 the indicial equa
tion of Eq. (26) has a double root equal to zero; hence 
of the two solutions only the one containing lnw (the 
nonanalytic at w = 0) will contribute to the integral. 
SpeCifically, let Gz(w,xs ; E) be the solution of Eq. (26), 
which near w = 0 is given by 

00 

G1(w,XS ; €) = .6 g"wn, (27) 
n=O 

with go = 1 and 

n 2fgn + (l + n)(l - n + 1)gn-1 - (n - 1)xs g n-2 = O. (28) 

Then a solution of Eq. (22) is 

Fl(Z'XS;e:)=.i..(~)I+l J GI(w,xs;e:)lnwezwdw, 
21T 2. C 

(29) 

with C surrounding the negative real axis Re w < O. Its 
asymptotic expansion23 for Re z > 0 is 

F(z x . f) ~ - L; T Z-(n+1) (
e:)1+1 00 

I 's' 2 n=O n , 
(30) 

with TO = 1 and18 

ne:Tn - (1 + n)(l-n + 1)Tn_1 - (n -1)2 xsTn _2 = O. (31) 

Equations (27) and (28) have been normalized so that 
whenxs = 0, G1 becomes equal24 to Pl(l- 2w/e:) and 
Fl equal to FI+ and F1- of Eq. (7) for f = 2 i and e: ::::: - 2 i, 
respectively. 

From Fl we determine a second solution F/ of Eq. (22) 
using expression (24). Fl and F/ are linearly independent 
(for e: '" 0), since they are independent in the special 
case Xs = O. 
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The solution F'z'is related to the second contour-integral 
solution given by the integral (25), say Fz':when C starts 
and ends at Re w = - 00 surrounding the point w = e:. In 
fact, p~' gives that integral (up to a constant factor). The 
proof of this statement consists of two steps. First, we 
show that F/ and F/, have the same asymptotic expan
sion (up to a factor). Secondly, we argue that F/ and F/, 
cannot be linearly independent because in that case 
every solution would have the same asymptotic expan
Sion, which is not correct for Fz. Consequently, Fz' and 
Fz" are proportional to each other. 

Reviewing the results of the present section, we see 
that two linearly independent solutions of Eq. (11) have 
been determined in terms of the contour integral (29). 
These solutions are 

(32) 

They are defined by Eqs. (21), (23), and (29), and have 
asymptotic expansions given by Eqs. (30) and (31). The 
notation R 1- and R 1+ has been adopted to indicate the 
retarded and advanced character of the solUtions, while 
the notation <R and <R 6 has been adopted to show the 
association of the asymptotic expansions with the third 
singular point at x = + 00. 

5. GLOBAL PROPERTIES OF THE SOLUTIONS 

In the mathematical formulation of a physical problem 
the differential equations obeyed by the field are supple
mented by a set of boundary conditions. In our case, in 
addition to Eq. (2), I{t will have to satisfy some condi
tions containing I{t and/or its derivatives evaluated on 
some surfaces, most probably19 r = 0, r = r s' and 
r = + 00. Consequently, we must know how a particular 
solution of Eq. (11) behaves over all. space-time. In 
fact, it will suffice to know the behavior of a particular 
solution at the singular points of Eq. (11), since every 
solution is analytic at the regular pOints. To put it 
differently, we have to know to what linear combination 
of <R 3 and <R 4 (or <R 5 and <R 6) a given linear combination 
of <R1 and <R2 corresponds. 

In principle, we face the general problem of finding the 
analytic continuation of a given solution of a differential 
equation. 25 However, here we are interested in practical 
answers, which can be used in numerical computations. 
In what follows we will limit ourselves to the real axis 
z = Rez = x. 

The matching of the solutions can be attained through 
the use of some linear relationships among <R j (i = 
1, 2, 3, 4, 5, 6). If 

d<R d<R. 
W[<Rj' <R] = <R. _1 - <R. -' (33) 

J 'dx Jdx 

is the Wronskian of any two of the six solutions given 
by Eqs. (13), (14), (17), (18), and (32), then a constant K;j 
exists such that 

(34) 

as it can be proved easily from Eq. (11). Moreover, the 
identities 

(35) 

and 

(36) 

are direct consequencies of Eq. (34). Equation (35) is 
obviously the key in relating the solutions among them-
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selves. It is enough to find the fifteen K.. (1( .. = - K.), 
'J 'J J' 

although they are not all independent. 

We start by evaluating the simplest of them, namely 
K 12 , K34 , K 56 , using the definition (34) and the series 
expansions for <R i • Since Kjj is a constant, it can be 
evaluated at any pOint, where the respective series 
converge. However, the expressions become simpler 
when we consider the limit of K.. as x goes to one of 
the singular points O,xs ' +00. W~ find 

(37) 

Note that K56 can be evaluated only by taking the limit 
as x ~ + 00 because <R 5 and <R 6 have asymptotic expan
sions only. 

We come now to the evaluation of K 13 , K 14 , K 23 , K 24 • 
The expansions of the needed <R j converge for 0 < x < Xs 
and, consequently, we can take the limits as x goes to 
Xs from below. We find 

K = ix 2 1'm [eiXslnlx-xsl(<R + i x -xs d<RA~J 
:.43 s 1 X-+X s _ A X (JX' 

s 
(38) 

where A = 1,2. K14 and K24 are found to be the com
plex conjugates of K13 and K 23 , respectively. Note that 
the coeffiCients C nand d n of the expansions for <R 3 and 
<R4 do not appear in expression (38). 

The evaluation of K 35, K 36 , K 45 , K46 requires a more 
elaborate scheme of matching. The series in Eqs. (17) 
and (18) converge for 0 < x < 2xs only, and the point 
x = + 00 lies far from the circle of convergence. Hence, 
we have to reexpress <R 3 and <R 4 so that the expansion 
of the solution around x = Xs will converge up to x = + 00. 
Using the transformation y = x-I, we rewrite Eq. (11) as 

y4(y _y )2 d 2R +y4(y _y ) dR 
6 dy2 6 dy 

+ [Yl + ysl(l + 1Hy -ys)y2]R = O. (39) 

Its solutions (R'3 and <R'4 in the neighborhood of the 
regular singular point y = y s = x;1 are (after resub
stitution of y and Ys with X-I and x;l) 

00 (1 1)n <R3(x) = 2:; c~ --- , 
n=O X Xs 

(40) 

(41) 

with <R'4(x) and <R'~(x) given by the complex conjugates 
of expressions (40) and (41), respectively. The coef
ficients c~ are related by the recUrrence relation 
(co = 1) 

Ys4(n + 2ixs)nc~ + [4(n -1 + ixs )2 + l(l + 1)]y;c~_1 

+ [3(n - 2 + iXs)2 + l(l + 1)]2y;c~_2 

+ [4(n - 3 + ixs )2 + l(l + 1)]ysc~-3 

+ (n - 4 + ixs)2c~_4 = O. (42) 

An easy calculation shows that the Wronskians of (R 3' <R 3 
and of <R4 , <R4 are zero and, consequently, <R3 and (R4 are 
proportional to <R 3 and <R 4 , respectively. In fact, in Eqs. 
(40) and (41) we have normalized <R3 and <R4 so that 
(when Co = Co = 1) 

(43) 
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However, the expressions for <R:; and <R4 [Eq. (41) and 
its complex conjugate] converge for 0 < y < 2ys or 
x> X6/2, namely for x up to + 00. Hence, we can take 
the limits of K 35 , K45, K 36, K46 as x ~ + 00 and use the 
asymptotic expansions for <R 5 and <R 6' The result is 

K =(=fi)Ze,xslnXslim xe±'~+xslnlx-xsl) <R"±i __ 3 . [. (d(R I/)~ 
38 x--++oO 3 dx ' 

(44) 
where the upper sign is to be taken when B = 5 and the 
lower sign when B = 6. K45 and K46 are the complex 
conjugates of K36 and K35, respectively. 

An attempt to calculate K 15, K 25 , K 16, K 26 along the 
same lines as above results in highly complicated for
mulas, because no Simple transformation26 exists, 
which will bring x = + 00 on the circumference of the 
circle of convergence of the solution around x = O. 
However, K 15, K16 , K~5' K 26 can be calculated indirectly 
from the relation (36) in terms of the remaining eleven 
Kip for which formulas have already been given. 

In the numerical evaluation of Kj ., the formulas (38) and 
(44) can be simplified by chooSirig appropriately the 
values through which x goes to the limit. If, for example, 
we set 

where II is a positive integer, then 

(the upper sign if B = 5, the lower if B = 6). A different 
choice of x~ can eliminate completely the factor e ± ix in 
Eq. (47). 

The next step in solving the complete boundary value 
problem will be the selection of two solutions RP) and 
Rle) to represent the field in the "near zc1ne" and the 
"far zone", respectively. Rz(i) and Rle) will be called 
"interior" and "exterior" and will play the roles of jz 
and h j of Eqs. (8) and (9). The interior and exterior 
solutions will be linear combinations of R1+ and R1- and 
in view of the results of the present section can be 
expressed as linear combinations of (R 1 and <R 2 or (R 3 
and <R 4• However, their selection has to be done after 
the exact formulation of the physical problem we wish to 
solve, since the boundary conditions will determine the 
appropriate Rli) and Rle). 

Some final remarks should be added here. Contrary to 
the flat-space case, in a curved space the electromag
netic 4-potential does not satisfy the same wave equa
tion [Eq. (2)J as the scalar field I{f. Consequently, the 
radial factor of the electromagnetic potential will satisfy 
a radial wave equation19 different from Eq. (11). 

The study of the solutions of this new radial equation 
can be accomplished27 along the lines of this paper. 
Beyond that, the methods of this paper can be used in 
studying radial equations which are derived from equa
tions similar to Eq. (2) (as the Klein-Gordon equation) 
in spherically symmetric spaces. These spaces can 
satisfy the Einstein or similar equations, e.g., in the 
Brans-Dicke and Weyl theories. 28 However, in these 
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more general cases the study of the static field28 should 
be completed before going to time-dependent situations. 
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19S. Persides, Proceedings of the First European Astronomical Meeting, 
Athens. 1972 (to be published). 

20 An alternative transformation used in the literature to study 
disturbances in Schwarzschild's space-time is a change of the 
independent variable to r* = r + r, In(r Ir, -I). However, this 
transformation is not convenient, because the coefficients of the 
resulting equation are not rational functions of r* (see, i.e., Refs. 3,4, 
and 5). 

21In a retarded coordinate system, u, r, 8, <p, the only nonzero 
components of the metric ~nsor are goo = (l-r,lr)c 2., gOl = glO = 
C, g22 = _r2, gn = -r 2sin28. The transformation is 
u = t - rc-1 - r,c-1ln(r/r, - I) with r,O, <p unchanged. 

22If F{(z.x,: E) is a solution of Eq. (22), then F/w. € ;-x,) is a solution of 
Eq. (26). From this property an integral equation can be obtained for 
For G. 

23A. ErdeJyi, Asymptotic Expansions (Dover, New York, 1956). See also 
Ref. 17. 

24PI is the Legendre polynomial normalized so thatP/1)= 1. 
2lSee, for example, Ref. 15, p. 286 and Ref. 17, p. 363. 
26In fact we must find a transformation y = f(x) which will map 

x =x, toy = y, and x = + ~ toy = y~ so that (a) no other 
singular point lies inside the circle (yS' Iys - y~ I) and (b) there is a 
large positive number x 0 such that all finite x > x 0 are mapped 
inside the circle (Ys' Iys - y~ I). It can be proved that a (complex) 
bilinear transformation cannot satisfy these conditions. A more involved 
transformation, such as a complex Schwarz-Christoffel transformation 
or a highly nonlinear transformation, can be found to satisfy the above 
conditions. 

27S. Persides and B. Xanthopoulos, to be published. 
28N. Cherry, Nuovo Cimento B 4, 144 (1971). 



                                                                                                                                    

Note on Green's functions for open lattices* 
G. L. Montet 

Argonne National Laboratory, Argonne, Illinois 60439 
(Received 12 February 1973) 

The method of Horiguchi is modified to discuss the case in which functions become infinite. The 
modified method is then used to derive Green's functions for the diamond lattice from those for the 
face-centered-cubic lattice. 

In a recent publication l Horiguchi has shown how to de
rive the Green's functions for the honeycomb net from 
those for the triangular net. His method is essentially 
as follows: The difference equation for an unbiased 
random walk on a triangular net with probability of 
motion II along each of the six possible directions, 

F(x,y) = 6%06 yO + II [F(x + 2,y) + F(x - 2,y) 

+ (F(x + 1,y + 3) + F(x + 1,y - 3) + F(x - 1,y + 3) 

+ F(x - 1,y - 3)], (1) 

is satisfied by a certain complicated integral. Hori
guchi showed that, for the source and the two nearest 
neighbors, the integral may be evaluated in terms of 
complete elliptic integrals whose arguments are com
plicated algebraic functions of II. Then, using the fact 
that the honeycomb net is composed c:i two interpenetrat
ing triangular nets (see Fig. 1), he demonstrated that 
for those positions of the honeycomb net which coincide 
with those of the triangular net containing the source, 

B 
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7 

FIG. 1. The honeycomb net. 
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FIG. 2. Difference Green's functions for the honeycomb net. 
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the Green's functions for the honeycomb net are pro
portional to those for the triangular net; furthermore, 
the Green's functions for the other positions may be 
found from the difference equations for the honeycomb 
net. It follows from this that the Green's functions for 
the triangular and honeycomb nets may be expressed 
in terms of complete elliptic integrals. 

It is unfortunate, in a sense, that the solutions are all 
infinite for the physically important case, II = 1/6; in 
that case the arguments of the elliptic integrals are 
unity and the integrals diverge. It is the purpose of this 
note to propose an alternate treatment of this case, and 
to show how this treatment may be used to express the 
Green's functions of the diamond lattice in terms of 
those for the face-centered-cubic lattice. 

It is known2•3 that the difficulties with divergence may 
be overcome by defining a difference Green's function, 

G(x,y) == F(O, 0) - F(x,y), 

where, in the case of the triangular lattice, F(x,y) is a 
solution of Eq. (1). The functions G(x,y) have been 
evaluated for the square2 and the triangular3 nets. 'As 
is obvious from the definition, 

G(O,O) == 0; 

(2) 

(3) 

furthermore, for unbiased random walks in which the 
probability of motion is the inverse of the number of 
nearest neighbors (i.e., II = 1/3 for the honeycomb net; 
II = 1/4 for the square net and the diamond lattice; II = 
1/6 for the triangular net and simple-cubic lattice), the 
difference equations insure that 

G(l) = 1, (4) 

where G(l) is the difference Green's function for the 
nearest neighbors of the source. It is easy to show that, 
for the open honeycomb net, the difference equations 
require 

(5) 

where the subscript h is to remind that this result is 
valid only for the honeycomb net. The result l of Hori
guchi is equivalent to the statement that, for those sites 
of the honeycomb net which coincide with those of the 
triangular net containing the source, 

(6) 

where the G t(x,y) are given in Ref. 3. This follows from 
the fact that if the G's for the two nets are proportional 
where the sites COincide, the proportionality factor 
must be given by the ratio G k (2)/ G t(1) = 3/2_ Again, the 
G ,,(x, y) for the other sites are found from the appro
priate difference equation, The results of this proce
dure are given in Fig. 2, which shows the difference 
Green's functions for the pOSitions near the origin. The 

Copyright © 1973 by the American Institute of Physics 1022 
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table could be extended with little effort but numerical 
values are most easily found by using the accurate 
asymptotic formula for G ,(x,y) given in Ref. 3. 

In extending the method to the diamond lattice, we re
mark first that Eqs. (3) and (4) still apply whereas 
Eq. (5) is replaced by 

Gd(2)=~. (7) 

The diamond lattice is composed of two interpenetrating 
face-centred-cubic lattices, one centered at (0,0,0), the 
source, the other centered at (1,1,1), one of the four 
first neighbours; the odd neighbors of the diamond lattice 
are located on the fcc lattice centered at (1,1,1) and the 
even neighbors of the diamond lattice are located on 
the fcc lattice centered at (0,0,0). In accord with the 
prescription above, the Green's function for one half of 
the diamond sites are given by 

4 
Fd (2k, 2l, 2m) = 3 Fj (2k, 21, 2m), (8) 

where Fd is the Green's function for the diamond lattice 
and Fj is the Green's function for the face-centered
cubic lattice. The Green's function for the odd-neighbor 
sites are found from the appropriate difference equation. 
The calculations are sketched below: 

Fd(O) == Fd(O, 0, 0) = i F/O, 0, 0) = : 
x 1. 344 661 183 = 1. 792 881 58, 

Fd (2) ~ Fd (2, 2,0) = i x 0.344661 183 = 0.459548 24, 

Fd (4) ~ Fd (4, 0, 0) = ~ x 0.229936054 = 0.306 581 41, 

Fd (6) ~ Fd (4, 2, 2) = : x 0.195466 708 = 0.260 622 28, 

Fd (8) ~ Fd (4, 4, 0) = i x 0.170 889 341 = 0.227 852 45. 

The values of Ej(2k, 21, 2m) are taken from Ref. 4, where
in they are deSIgnated F(k, 1, m). 

The difference equation 

F(O) = 1 + F(l) 

yields 

Fd (l) ~ Fd (1, 1, 1) = 0.792881 58. 

J. Math. Phys., Vol. 14, No.8, August 1973 

The difference equation 

F(3) = tF(2) + tF(4) + tF(6) 

yields 

Fd (3) ~ Fd (3, 1,- 1) = 0.371 57504. 

The difference equation 

F(2) = tF(l) + !F(3) + tF(5) 

yields 

Fd(5) ~ F(3, 3,1) = 0.302 161 31. 

The difference equation 

F(4) = tF(3) + tF(7) 

yields 

Fd(7) ~ F(5, 1, 1) = 0.241 587 78. 

1023 

These values are complete through the first eight 
neighbor shells except for a seventh neighbor of the 
second kind, Fd (7') ~ Fd (- 3, - 3, - 3), which requires a 
knowledge of F,(4, 4, 4), or F(2, 2, 2), not tabulated in 
Ref. 4. F(2, 2, 2) is, however, known in integral form 
and the integral may be evaluated by the methods dis
cussed in Ref. 4; thus, the tabulation may be extended in 
an obvious manner. The values obtained may be checked 
by various relations derived from the difference equa
tions. The most interesting ·of these is 

which is satisfied identically. 

*Based on work performed under the auspices of the Atomic Energy 
Commission. 

IT. Horiguchi, J. Math. Phys. 13, 1411 (1972). 
2W. McCrea and F. Whipple, Proc. R. Soc. Edinb. 60, 281 (1940). 
3E. Keberle and G. Montet, J. Math. Anal. Appl. 6, 1 (1963). 
4G. Montet, Phys. Rev. B 7, 650 (1973). 



                                                                                                                                    

Electromagnetic wave propagation in inhomogeneous 
multilayered structures of arbitrarily varying thickness
Generalized field transforms * 

E. Bahar 

Electrical Engineering Department, University of Nebraska, Lincoln, Nebraska 68508 
(Received 13 December 1973) 

To provide a suitable basis for the expansion of electromagnetic fields in multilayered structures of 
arbitrarily varying thickness we derive, in this paper, the appropriate transform pairs for the 
transverse electric and magnetic field components. Applying the technique utilized earlier for two 
semi-infinite media, we first derive the transform pairs for the three-medium problem. Building on 
these expressions for the transform pairs, we systematically extend our results for structures with an 
arbitrary number of layers. The generalized transforms derived consist of two infinite integrals 
(continuous spectrum) which correspond to the radiation and the lateral wave terms as well as a 
finite number of terms (discrete spectrum) which correspond to the surface waves. Exact boundary 
conditions are employed rather than surface impedance boundary conditions. In the analysis, the 
sources and the observation point may be located in any of the structure's layers. Thus for instance, 
the derived field expressions are suitable for the study of antennas embedded in the earth's crust or 
submerged underwater. 

1. INTRODUCTION 

A full wave solution to the problem of electromagnetic 
wave propagation over nonuniform boundaries was de
rived recently using a Fourier-type transform pair that 
provides a suitable basis for the expansion of the elec
tromagnetic fields above and below the nonuniform in
terface. 1 ,2 In order to solve the problem of propagation 
in inhomogeneous multilayered structures of arbitrarily 
varying thickness (see Fig. 1), we derive, in this paper, 
the appropriate transform pairs for the transverse com
ponents of the electromagnetic fields. To this end, we 
first apply the familiar Fourier transform method to 
derive the fields for a three-medium problem, with 
source and observer in any of the three layers. Using 
the techniques employed earlier, we deform the path of 
integration in the complex plane to obtain the deSired 

hr,rtl 

y 

jm . 
/E=EXiiX+Eyiiy 

H= Hz az 

H4 

hqt 

hl,2' h2j3 

h3;4 

h4,5 

hr-I,r 

---__ ~r+I(X) fLr+l( 
m-2 -----____ .... __ 

£m-2(X) fLrn.iX) --------... 
--r--;m;;:-:jI.....::!!!:!~...t::.~~ ____ r-_hm-2, m-I 

hm-2,m-1 -
£m-I(X) fLm-(.X) Hm-I 

hm-I,m--+--~~::-:~:-:-----...:i=_hm-I,m 
m fim(X) fLrrlX) 

FIG. 1. Inhomogeneous multilayered structure of variable thickness. 
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transforms which consist of two branch-cut integrals 
and a finite number of contributions due to the poles of 
the integrand. Building on these expreSSions for the 
three-medium transform pair, we systematically con
struct the generalized transform pairs for structures 
with an arbitrary number of layers, without any recourse 
to the familiar Fourier transforms. 

If the electromagnetic parameters of the uppermost or 
lowermost layers are such that (jJ./ €) 1/2 ~ 0 or 
(€/ jJ.)l/2 ~ 0 (perfect electric or magnetic walls res
pectively) or if one of the boundaries of the multilayered 
structure is characterized by a (approximate) surface 
impedance, the electromagnetic fields are expressed in 
terms of a finite number of surface wave modes and 
only one branch-cut integral. However, if both boundary 
media are characterized by electromagnetic parameters 
(jJ./€)l/2 ~ 0 or (djJ.)l/2 ~ O,or both boundaries of the 
multilayered structure are characterized by surface 
impedances, the electromagnetic fields are expressed in 
terms of an infinite set of waveguide modes. There are 
no contributions from branch-cut integrals in this case. 

These solutions are not restricted by approximate sur
face impedance boundary conditions and, since in this 
analysis the source and the observer may be located in 
any of the structure's layers, the transforms may be used 
to study the performance of antennas embedded in a non
uniform environment such as the earth's crust or the 
ionosphere. 

2. TRANSFORM PAIR FOR A THREE-MEDIUM 
UNIFORM STRUCTURE 

In this paper we consider in detail the case of verti
cally polarized waves and assume that there are no 
field variations in the z direction (see Fig. 2). USing 
duality conSiderations for electromagnetic fields, these 
solutions can be applied directly to the case of hori
zontally polarized waves. 

For an exp(iwt) time dependence, the horizontal mag
netic field Hz liz generated by a z directed magnetic line 
source Jm az (analogous to the electric line current) 
satisfies the wave equation 

Copyright © 1973 by the American Institute of Physics 1024 
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jm y / l· Exilx+Eylly . 
R'Hz!lz 

€o,iLo 0 
RO 

0 

El,iLl HI 
RO 

I 

-----+----- E2,iL2 ----- 2 ------.·X 

FIG. 2 Three-medium uniform structure. 

where the magnetic line source, of intensity K volts, is 
located anywhere in medium O(f..Lo, f O)' 1 (f..Ll' fl)' or 
2(f..L2' f 2 ) and 6(x - x o) and O(y - Yo) are Dirac delta 
functions. The wavenumber is 

k = W(f..L f ) 1/2, Im(k)!S 0, (2. Ib) 

(2. lc) 

For p = (x 2 + y2)1/2 ~ 00, Hz satisfies the radiation 
condition and· at the surfaces y = hOI and y = h12 the 
boundary conditions are 

(2.2a) 

and 

USing the familiar Fourier transforms with respect to 
the unbounded variable x, we seek a solution of the form 

where H( (3, y) satisfies 

and 

a2H({3,y) 
--2- + u 2H({3,y) = iWfKO(y - Yo) ay 

U = (k 2 - (32) 1/2, Im(u) !S O. 

(2.3b) 

(2.3c) 

On applying the boundary conditions (2. 2), the solution 
for H({3,y) in the three layers 0,1, and 2, respectively, 
are, for Yo > hO,l> 

-KWf 
H({3,y) = 0 

2uo 

x 

exp[- iuo I y - Yo I] + R 8 h exp[- iuo(Y + Yo)], 

(T8ITfH) exp[- iuo(Yo - hOI)] 

x {exp[iul(y - hOI)] + Rfh exp[- iul(y - hOl)]}' 

(T8 T fITfH) exp[- iuo( Yo - hOI) - iulH 1] 

x exp[iu2(y - h12)], 

for hOI> Yo > h 12, (2.4a) 
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(1 + A)T ~[exp - iUl (hoI - Yo)] exp[ - iuo( y - hoI)], 

exp[- iU l I y - Yo I] + A exp[- iUl (y - Yo)] 

x + B exp[iu1(y - Yo)], 

(1 + B)Tq exp[iu1(h 12 - Yo)] 

x expliu2 (y - 1z 12 )], 

and, for h12 > Yo, 

-KWf 2 
H({3,y) = 2 

u2 

(TgTfITflI) exp[iu2(Yo - h 12) - iu1H d 
x exp[- iuo(Y - hOI)]' 

(2.4b) 

x 
(T~/TfH) exp[iu2(yo - h 12)]{exp[- iu l(Y - h12 )] 

+Rfh exp[iu1(y-h12)]}, 

exp[- iu2 I Y-Y o l] +R~h 

x exp[iu 2(y + Yo)], 
(2.4c) 

where Rf and Rf, the reflection coefficients in the ith 
layer looking in the positive and negative y directions, 
respectively, are given by 

R8 = (R 1 ,0 +RfH)/(1 +Rl,oRfH), Rf =R 2.1, 

RfH =Rf exp(- i2u iHi ), Rfh =Rf exp(i2u i h i,i+l)' 

RfH = Rf exp(- i2uiHi)' Rfh = Rf exp(- i2uih i _1 ,i)' 

(2.5a) 
The coefficients A and Bare 

A = [Rfh exp(- i2ulYO) -R 1,oRflI]!(1 +Rl,oRfH), 

B = [Rfhexp(i2u1yo) -R1,2RfH]/(1 +Rl,2RfH), 

and Ri i+1' the two-medium Fresnel reflection coeffi
cients; are 

R i +1 ,i = -Ri, i+1 = (u i fi+1 - ui+l E i)1 (u i E i+l + u i +l f i)' 

(2.5b) 
The transmission coefficients are 

Tf=l +Rf, Tf=l +Rf, TyH=l +RfH, 

TfH = 1 + R fH (2. 5c) 

and the thickness of the ith layer is (see Fig. 2) 

Hi=hi-l,i -hi,i+l' (2.5d) 

where i = 1 and 2. 

The above Fourier expansion of HzCx, y) [(2.3a)] is not 
suitable for the full wave analysis of problems in which 
the layers are inhomogeneous (f i (x), f..Li (x» or when all 
the surfaces y = hi, i+1 are not planes parallel to the 
(x,z) plane. To obtain a suitable expansion, we deform 
the path of integration (- 00 < (3 < (0) in the lower and 
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upper half f3 plane for x ~ Xo and x :S x O' respectively, as 
indicated in Fig. 3. 3 ,4 We note that, in all the expressions 
(2. 4), Uo == 0 and u2 == 0 are branch pOints; however, 
u1 == 0 is not a branch point since H( f3, y) in (2. 4) is the 
same for the values of u1 on both Rieman sheets. The 
poles of the integrand are at llR8 == 0 (or llR~ == 0). 
Thus the modal equation for the surface waves is 

(2.6) 

subject to the condition (2.3c), Im(u):s O. 

Accounting for the residues at the N poles f3 == f3 n 
(1m f3'1. :S 0) and the contributions along the branch cuts 
Im(uo} == 0 and Im(u2) == 0, we get, after some tedious 
algebraic manipulations, 

N 

Hz(x,y) == Ho(x,y) + H 2(x,y) + EH;'(X,Y) 
n=l 

== - ~ (1: exp(- if3lx - Xo I)+o(u, yo)I/Io(u,y)duo 

+ J; exp(- if3lx - Xo 1)"+2(U, YO)I/I2(u, y)du2 

+ ~1 exp(- if3 n Ix - xol)'lts(u,yo)I/I s(u,y») 

== - ~ E exp(- it3lx - Xo 1)+m(u,yo)I/Im(u,y), 
m 

m == 0, 2, or s, (2. 7a) 

where 

21TZo+o(u,y) ==R8h l/lo(u,y) 

exp(iuoY) + R8h exp(- iuoY), 

(T8ITfH) exp(i(uo - u1)ho1][exp(iu1Y) 

== + R fh exp(- iU1Y)] ' 

(TgTfITfH) exp[i(uo - u1)ho1 

:l- i(u1 - u2)h12] exp(iu2Y)' 
(2.7b) 

21TZ 2"+2(U,y) ==R~hl/l2(u,y) 

(T~TfITfH) exp[i(u1 - u2)h12 + i(uo - ul)ho1] 

x exp(- iuoY)' 

== (TqITfH) exp(i(u1-u2)h12][exp(-iu1Y) +Rfh 

x exp(iu1Y)], 

exp(- iu2y) + R ~H exp(iu2y), (2.7c) 

and for the nth surface wave mode 

"+~(u,y) == I/I~(u,y) == +~(u,h01) 

\ exp[- iuB(y - h01)]' 

x) (lITfH) exp(- iurh01)[ exp(iufy) + Rfh exp(- iurY)] , 

{(TfITfH) exp(- iurH 1) exp[iu~(y - h12)]. (2.7d) 

The transverse wave impedance is 

lZO y>h01 

Z(u,y) == t3IWE(Y) == Zl: h01 > y > h12 

Z2' h12 > y 

(2.8a) 

and 

["+ ;,(u,h01 )]2 == [13~uoZo ; ;~r11=8 
II 

(2.8b) 
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FIG. 3. Paths of integration in the complex /3 plane. 

It can be shown that 
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== [f3 (iU2Z 2 ~ ~) -lJ (2. 8c) 
dt3 R~ 8=8 

n 

Substituting the expression (2. 7a) for H%(x, y) into the 
wave equation (2. la) and noting that the one-dimensional 
Green's function exp[- it3lx - Xo I] satisfies the dif
ferential equation 

(~ + 132) exp[- it3lx - Xo I] == - i2t30(x - x o), (2.9a) 
8x2 

we get the following complete expansion for O(y - Yo): 

E Z(Yo)"+m(u'YO)I/Im(u,y) == O(y- Yo) (2.9b) 
m 

where the summation symbol E is interpreted as in 
(2. 7a). To derive the desired transform pair for the 
three-medium problem, we multiply (2.9b) by Hz (x, Yo) 
and integrate with respect to Yo over the interval 
(-~, ~). Thus 

Hz(x,y) == Ho(x,y) + H 2(x,y) + EH~(X,y) 

== EHp(x,u)I/Ip(u,y), p = 0,2,or s 

and the transform functions Hp(x, u) are 

Hp(x,u) == r:Hz(x,y)Z(u,y)'ltp(u,y)dy, 

(2. lOa) 

p == 0,2, or s. (2. lOb) 

Using the transform pair (2.10), we derive the impor
tant orthogonal relationship 

r:Z(u, y)+ p(u,y)I/I q(u*,y)dy 

j
O(U - u*), t3 ;0' t3 s' 

== ° ~(u - u*) = ° p,q p,q 

0 .... , f3*==f3 s ' . . s (2. 11) 

where p and q are equal to 0, 2, or s and /I a b is the 
Kronecker delta. The expressions for the tunctions 
Ho 2(X,y) in (2. lOa) can be written in forms that are 
more convenient for integration by the method of 
steepest descent. 
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Noting that 

and 

H 2(x,U2) =R¥"H2(x,-uO)' 

we get 

(2. 12a) 

(2. 12b) 

Ho(X,y) = r:Ho(x,u) exp(- iy,uo)duo, y > h01' 
(2. 12c) 

and 

H2(x,y) = Joo H 2(x,y) exp(iy,u2)du2' y < h 12 • 
-00 

(2. 12d) 
In the analysis of the two-medium problem,l, 2 it has 
been shown that the above expressions (2.11) correspond 
to the radiation and the lateral wave terms. We now 
derive the corresponding transform pair for the trans
verse component of the electric field E y' Noting that 

i oHz 
Ey(X,y) = -

WE ox (2.13) 

the appropriate basis function for Ey(x,y) is Z(u,y) 
l/I(u, y); thus 

(2. 14a) 

where 

E p(x, u) = r: E y(x, y)'It p(u, y)dy, p = 0,2, and 5, 

(2. 14b) 
and L; is interpreted as in (2. 7a). 

To obtain the corresponding transform pairs for the 
dual problem (electric line current excitation 1) in 
which the waves are hOrizontally polarized, we make the 
following substitutions in the above-derived transform 
pairs: 

Hz ~ E z, Ey ~ -Hy, 

E ~ IJ., K ~ I. 

As a result, the reflection coefficients for vertical 
polarization R v are replaced by the reflection coeffi-

y /Ea Ex'llx +Eyay 

H'Hz liz 

----~----~T----~-----------r-----h~ 
R~ 

---~--"":""--.----~"":""----"":""':"':"4-----h 1,2 

R~ r 
---~--~~----~-----------L-----hZ~ R~ T 3 ,.. 
----- ----------!Rf-I-----------;.:j---

o h,_I., 
RV T t' ~, .fL, ~r r 

________ ~L ___________________ ~_:' ___ hr. r+1 

lR~-2 m-2 
----1-----_r_ f----..t....,;;;...;;~------~T---hm-2,m-1 

R~_II 0 H 1 Rm- I ~m~~m-I 1m- I m-I 
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FIG. 4. Multilayered uniform structure. 
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cient for horizontally polarized waves R h , and Z(u,y) 
is replaced by Y(u,y) = (3/WIJ.. 

3. GENERALIZED TRANSFORMS FOR 
MULTILAYERED MEDIA 

On the basis of the derivations in the preceding section, 
we systematically construct the expressions for the 
generalized transforms for stratified media with an 
arbitrary number of layers (see Fig. 4). We shall do 
this directly, without recourse to the familiar Fourier 
transforms (with respect to the x variable). 

The m + 1 layers are characterized by the electro
magnetic parameters (i and IJ. i with i = 0, 1, ... ,m. 
The wave parameters k i and ui are defined as in Sec. 2, 
Eqs. (2. Ib) and (2.3c). Likewise, all the ret:lection and 
transmission coefficients in the ith layer are denoted 
by the subscript i (see Fig. 4). 

As in the case of the three-medium problem, the ex
preSSions for the transforms for the multilayered case 
consist of two infinite branch cut integrals [Im(uo) = 0 
and Im(urn ) = 0] corresponding to the branch pOints 
Uo = 0 and urn = O. In addition the transforms consist of 
a finite number of surface-wave (or trapped) waveguide 
modes, characterized by the modal equation 

1/R8=0 or l/R~=O. (3.1a) 

The reflection coefficient Rp is the reflection coeffi
cient at the i, i + 1 interface for waves incident from 
above and Rp is the reflection coefficient at the i, i - 1 
interface for waves incident from below. Thus 

and 

Rg = 0, Rp = (R i -1, i + Rl'!1)/(l + Ri -1, ; Rl'-If), 

i=1,2, •.• ,m, (3.1b) 

R~ = 0, Rp= (R i +1,i + Rf.1.>!(1 + R i +1,i R f.1'>, 

i = 0,1, ... ,m - 1, (3.1c) 

where Ri +1, i and R i _1 i are the Fresnel reflection 
coefficients (2.5b) and RFh ,RFH,Rph and RiDH are de
fined as in Sec. 2, Eq. (2. 5a). The transmission coeffi
cients TF, TfH, Tp and TPH are given by (2.5c). 

To obtain the expression for the baSis function l/Io(u, y) 
[corresponding to the branch cut integral bn (uo) = 0], 
we begin with the expressions for the fields for y > h01 
and Yo> h01 and work downward (in the negative y 
direction), satisfying at each interface the boundary 
conditions 

(3.2a) 

and 

l.. -aa l/I(u,h~ . 1) = _1_ ':layl/l(u, hi, i+1)' 
Ei y t,'+ Ei+1 v 

(3.2b) 

Thus we obtain directly 

= 

exp(iuoY) + Rgh exp(- iuoY), for medium 0, 

n (Tt-1/ TfH\ exp {i t Up_1 ,php_1 ,p} 
P=l~ } n=l 

X [exp(iu .. y) + R ~h exp(- iu .. y)], 

for medium r = 1,2,3, ... ,m, (3.3a) 
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where 

(3.3b) 

Similarly, to derive the basis functions 1ttm (u, y) [corres
ponding to the branch cut integral Im(u ) = 0], we begin 
with the fields for y < h m- 1 . m and Yo < hm- 1 m and work 
upward (in the positive y direction), satisfyiIig at each 
interface the boundary conditions (3.2). Thus we obtain 
directly 

m-T T ~+l-P { . rI TUH exp z:6um-p,m+1-phm-p,m+1_p} 
P-1 m-p 

X [exp(- iuTy) + R ¥h exp(iuTy)], 

for medium r = 0,1,2, ... ,m -1, 

exp(- iumy) + R!:.h exp(iumy), for medium m. 
(3.3c) 

To derive the basis functions 1tt .(u, y) for the (trapped) 
waveguide modes, we can begin with the field expression 
in either the uppermost or lowermost medium (0 or m) 
and work downward or upward respectively, satisfying 
the boundary conditions (3.2) at each interface. Thus 
for the nth waveguide mode, working downward from 
medium 0, we get 

exp[- iuS (y - h 01 )]' for medium 0 

1 
TfH exp(- iu~ h01 )[ exp(iu~y) + R fh exp(- iufy)], 

for medium 1 
x 

1 exp(- iUf h01 ) IT T~_l exp ~ ± uj-1 P hp_1 p) 
TfH p=2 T~H \' p=2 . , 

x [exp(iu;y) + Rfh exp(- iu;y)], 

for medium r = 2,3, •.. ,m, (3.4a) 

where 

['11~ (u, h01)]2 =~tzouo ~ Rl~) -lJ 8=8
n 

(3.4b) 

Alternatively, working upward starting with medium m, 
we get an equivalent expression for '11~ (u,y), 

x 

1 , m-T T~+l_P 
exp(zu n ) n ---

T UH m-1 m _ TUH 
m-1 p-2 m-p 

X exp(iu;:,_p, m+1-p h m_p, m+1-p)' 

X [exp(- iu~ y) + R ¥h exp(iu,:- y)] 

for medium r, where r = 0,1,2, ... ,m - 2, 

1 
TUH exp(iu::'_ l h m-1, m)[ exp(- iU;:'_lY) 

m-1 
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Using the expression (3. 3a), (3. 3c), and (3.4a) (or 3.4c) 
for the basis functions, we can now write complete ex
pansions for H.(x,y) and Ey(X,y) in terms of their trans
forms H(u, y) and E(u, y) as in (2.10) and (2.14), res
pectively. Thus noting that here the subscript 2 (for 
medium 2) must be replaced by m, we get 

N 

HAx,y) = Ho(x,y) + Hm(x,y) + L: H~(x,y) 
n=l 

(3.5a) 

where 

Hp(X,u) = 1: H.(x,y)Z(u,y)'I1p(u,y)dy, 

p = O,m, or s, (3.5b) 

and 

(3.6a) 

where 

Ep (x,u) = 1: E y(x,y)'I1p(u,y)dy. (3.6b) 

Similarly the orthogonal relationship (2.11) is satisfied 
for the (m+ I)-layer medium. In this case we let p and q 
equal 0, m, or s in (2. 11). Note that all the normalization 
coefficients are obtained automatically without actual 
integration with respect to y over the interval (- co, co). 

4. THE MODAL EQUATION 

It was intuitively assumed in Sec. 3 that, for the wave
guide modes, llR 8 = 0 or l/R!:. = 0 [(3. la)]. In Sec. 2, 
this was explicitly shown to be the case for the three
medium problem. We demonstrate in this section that 
the same holds when the structure has an arbitrary 
number of layers (m + 1). Beginning with the condition 

l/R8 = 0, (4. la) 

it follows directly from (3. lc) that, for the waveguide 
modes, 

(4.1b) 

By substituting for R fH, using the recurrence formula 
(3. lc), the above equation (4. Ib) can also be written as 

[(I-RfHR 21 ) + (R 21 -RfH)RfH]/(1 +R21R~H) = O. 
(4.1c) 

To satisfy (4. lc), the necessary and sufficient condition 
is 

l-R¥R~H = 0, (4.2) 

where we have used the definition of R ¥ given in (3. Ib). 
In a straightforward manner it can be shown that, in 
general, the necessary and sufficient condition can be 
expressed as 

1 - R ~R f exp(- i2upHp) = 0, p=I,2,3, ••• ,m-1. 
(4.3) 

+ R !:.~1 exp(iu;:'_lY)]' for medium m - 1, Thus for p = m - 1 we get from (4.3) 

exp[iu;:,(y - hm-1,m)], for medium m, (3. 4c) l-R!:._lR~_l exp(- i2um_1Hm_1) 
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= 1 +R~l!.lRm,m-1 = O. (4.4a) 

The above modal equation corresponds precisely to the 
condition 
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l/R~ = O. (4.4b) 

Thus, the roots of Eqs. (4. la), (4. 3), and (4. lb) are iden
tical. Equation (4.3), which is satisfied in each of the 
layers of finite thickness, is equivalent to the statement 
that the waves associated with the trapped waveguide 
modes undergo constructive interference in each layer 
of the structure. 

5. CONCLUDING REMARKS 

In this paper, we have derived a systematic method for 
constructing the transform pairs for the transverse com
ponents of the electromagnetic fields in a multilayered 
structure. The complete expansion consists of two in
finite (branch cut) integrals-the continuous part of the 
wavenumber spectrum, as well as a finite number of 
trapped waveguide modes-the discrete part of the wave
number spectrum. 

The method also provides all the important orthogonality 
relationships (2.11) that are satisfied by the basis func-
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tions and determines all the normalization coefficients 
without performing any integrations. 

In an earlier analysis of the two-medium problem,1.2 
the infinite integrals are identified as the radiation and 
the lateral wave terms. 

The transforms derived in this paper for uniform multi
layered media provide a suitable basis for the expan
sion of electromagnetic fields in an inhomogeneous multi
layered structure of arbitrarily varying thickness. 5 
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Science Foundation and the Engineering Research Center of the 
University of Nebraska. The author wishes to thank J. R. Wait and 
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Electromagnetic wave propagation in inhomogeneous 
multilayered structures of arbitrary thickness - Full wave 
solutions* 

E. Bahar 

Electrical Engineering Department, University of Nebraska, Lincoln, Nebraska 68508 
(Received 13 December 1972) 

In this paper, we derive full wave solutions to the problem of electromagnetic wave propagation in 
inhomogeneous multilayered structures of arbitrarily varying thickness. To this end, we employ 
generalized transforms that provide an appropriate basis for the complete expansion of the transverse 
components of the electromagnetic fields. The continuous parts of the wavenumber spectrum are the 
radiation and the lateral wave terms while the discrete part is identified as the finite set of trapped 
waveguide modes (surface waves). When the bounding media are characterized by perfect electric or 
magnetic walls (pIe .... ° or elll .... 0, respectively) or surface impedances, the fields are expressed 
exclusively in terms of an infinite set of waveguide modes. These solutions are not restricted by the 
approximate surface impedance concept and the sources and observation point may be located in any 
of the nonuniform layers of the structUre. Exact boundary conditions are imposed and the solutions 
satisfy the reciprocity relationships. Thus, the solutions are applicable to artificial layered structures 
as well as natural structures such as the inhomogeneous ionosphere and the earth's crust. These 
solutions can also be used to determine the scattering from objects of finite cross section in free 
space or embedded in the earth's crust. 

1. INTRODUCTION For the purpose of the full wave analysis, generalized 
transforms! are used to provide a suitable complete 
expansion for the transverse components of the electro
magnetic fields. The continuous parts of the wave
number spectrum (two infinite integrals) correspond to 
the radiation and the lateral wave terms, while the dis
crete part is identified as the finite set of trapped wave
guide modes or surface waves. These solutions satisfy 
the reciprocity relationships in electromagnetic theory. 

Full wave solutions are derived to the problem of pro
pagation of electromagnetic waves in multilayered 
structures of arbitrarily varying thickness (see Fig. 1). 
The electromagnetic parameters E and /J., characteriz
ing the medium of propagation in each layer, are also 
assumed to vary along the propagation path (the x axis). 
The sources and observation point may be located in 
any of the (m + 1) media of the structure. 

Exact boundary conditions are imposed and the solu
tions are not restricted by the approximate surface 
impedance concept. 

y 

Jm 
• 

hl,2' h~ 

hr,r+1 --__ Er.~X) fLr.l( 
m-2 ----____ .,.. __ 

Em-2(X) fLm-i-X) --------
hm-2,m-1 ..--r--;m;;:-:jl--.:::!!:!~..c~;' ___ -.r-

"m-I(X) fLm-~X) Hm-I 
hm-I,m--+--~~::-~~----":;':::_hm-Itm 

m "m(X) ,LLnIX) 

hm-2,m-1 

FIG. 1. Line source over a nonuniform multilayered structure. 
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A wide class of problems such as propagation in the 
nonuniform and inhomogeneous ionosphere layers or 
the earth's crust as well as artificial layered struc
tures may be solved using the analysis derived in this 
paper. In the special case when the bounding media of 
the structure are regarded as perfect electric or mag
netic walls (JA.! E -+ 0 or E!/J.-+ 0, respectively) or when 
they are characterized by surface impedances, the elec
tromagnetic fields are expressed exclusively in terms 
of an infinite set of waveguide modes and the radiation 
and lateral wave terms vanish. Thus, in these cases, 
when m::: 2 and the electromagnetic parameters E, /J. 
are constant, our problem reduces to the problem of 
propagation in a waveguide of variable height which has 
been treated extensively in the technical literature. On 
the other hand, when only one of the bounding media is 
regarded as an electric or magnetic wall or if it is 
characterised by a surface impedance, only one of the 
infinite integrals in the field expansions vanishes. 

In the special case when m = 1, our solutions reduce to 
those derived recently2 for the two-medium problems. 
The solutions can also be used to determine the scatter
ing of electromagnetic waves from objects of finite 
cross-section embedded in the earth's crust or in free 
space (see Fig. 2). 

2. FORMULATION OF THE PROBLEM 

Propagation of vertically polarized waves in the non
uniform multilayered structure shown in Fig. 1 is con
sidered in detail in this paper. The solutions for hori
zontally polarized waves may be derived in a similar 
manner or obtained directly from our present analysis, 
through duality considerations in electromagnetic theory 
(E -+ /J., /J. -+ E, Ii -+ E, and E-+ - Ii). The height of the 

Copyright © 1973 by the American Institute of Physics 1030 
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interface between medium r and medium r + 1 from a 
reference plane y = 0 is h y. 1'+1 (x) and the thickness of 
the rth layer is 

(2.1) 

Furthermore, the electromagnetic parameters for the 
rth layer (f y' /Joy) are also assumed to vary arbitrarily 
along the propagation path (the x axis). It is assumed 
here that the excitation is independent of the z axis; 
thus, the problem is two-dimensional and the scattered 
fields are also vertically polarized. We assume, with
out loss of generality, that the vertically polarized 
waves are generated by a z-direc.!..ed line source Jm 
(dual to the electric line current J) located at x = x 0 

and y = Yo (see Fig. 1): 

J m(x,y)=K15(x-xo)15(y-yo), (2.2) 

where 15 (x - xo) and 15(y - Yo) are Dirac delta functions 
and the intensity of the line source K is measured in 
volts. For an assumed exp(iwt) time dependence, the 
nonvanishing components of the electric and magnetic 
fields E and li, respectively, are 

oEy oE" . - - - = - fWIJ.H - J 
ox oy z m' 

(2.3a) 

oH z . 
-- = fWEE", 
oy 

(2.3b) 

and 
oH z 

- - = iWEE 
ox y' 

(2.3c) 

where the electromagnetic coefficients are 

E(X,y) = Ey(X)} , 

() ( 
hy.1'+1 < y < hy_1,y, 

/Jo x,y = lJ.y x) 
r= 1, ... ,m-I, 

and 

E(X,y) = EO(X), {..L(X, y) = lJ.o(x), 

(2.4) 
For p = (x2 + Y 2) 1/2 ~ 00, the electromagnetic fields 
satisfy the radiation condition and at each varying inter
face y = h y,1'+l(X), the boundary conditions are 

E(X,y) = Em(X), h m- 1 ,m < y. 

(2.5a) 

and 

where 

= E y(x,h-...Y+l) sin9 y ,Y+l + E,,(x,h-...1'+I) cos9y,y~V 
(2.5b) 

tan9 = h' = dhy.Y+l(x) 
y,y~1 y,y~1 dx (2.5c) 

Using (2. 3b) to eliminate E" from (2. 5b) and (2. 3a), we 
get 

[E~ - E- ]h ' - i l.... (1... H~ __ 1_ H-) 
y y y,y~1- W oy Ey z EY~1 z 

and 

(2.5d) 

- ~ = - k 2H + ~ + J oE i [ o2H J 
oX WE z Cly2 m' 

(2. 5e) 

where the wavenumber is 

k(x,y) = W({..LE)1/2, Im(k) :5 O. (2.5f) 
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. 
J., 

hO,t 

E ,(X),fL,(X) 

---------;-------ht,2,h2,3 
E

3
(X)- E,(X) 

fL3(X)' fLt (X) 

--+-------------------------~x 

FIG.2. Line source over a nonuniform structure with a layer of 
finite cross section 

In our analysis, we employ the following generalized 
transform pair to obtain a complete expansion for the 
magnetic field component 1 Hz: 

Hz(x,y) = Ho(x,y) +H"!(x,y) +H.(x,y) 

== ~ H p(x, u)1/I p(u, y) 

= f" HO(x, u) I/Io(u,y)duo + 100 

Hm(x,u)l/Im(x,u)du m o 0 
N 

+ ~ H~(x,u)I/I~(x,u) 
n=1 

(2.6a) 

and 

Hp(x,u) = 1: Hz(x, y)Z(U,Y)l/Ip(U, y)dy, 

p = 0, m, or s. (2.6b) 

The basis functions satisfy the differential equation 

(:y22 + u 2) I/I(u, y) = 0 (2.7a) 

and the boundary conditions at each interface, y = hy,1'+V 

1/1 (u, h~) = 1/1 (u, h-) 

and 

o (1 1 ) oy E 1/1 (u, h +) - -E- 1/1 (u, h-) = O. 
y y+1 

(2.7b) 

The boundary condition (2. 7b) corresponds to (2. 5d) 
only for the special case hy,y~1 = const. Thus, in gener
al the expansion (2. 6) for Hz (x, y) does not uniformly 
converge at the interfaces y = hy 1'+1' In general, the 
basis functions are explicitly functions of x (through 
the height functions h y,1'+1 and the electromagnetic 
parameters E and IJ.). 

The expressions for the basis functions 1/1 (u, y) are, for 
q = 0, given by q 

211Z0 l}lO(U,y) = R8"l/Io(u,y) 

exp(iuoY) + R8h exp(- iuoY), for medium 0 

IT T~_1 exp~ ;.. u h \ 
p=1 T~H \' p'-!t p-1,p P-1,PJ 

x [exp(iuyy) + R~ exp(- iuyy)), 

for medium r = 1,2, ... , m, 

for q = m, 

(2. Sa) 
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:ij: TT~~~P exp ~ 'R: Um-p.m+1-phm-p.m+1-p) 

X [exp(- iU,.y) + R~h exp(iu,.y)], 

for medium r = 0, 1, 2, ... , m - 1, 

exp(- iumY) + R~h exp(iumY), 

for medium m, 

and for the nth surface-wave mode (q = 8), 

+~(u, y) = 1/1 ~(u, y) = +~ (u, h 0 1) 

x 

where 

exp[- iU3(y - h01)]' for medium 0, 

_1_ exp(- iU'lh01)[exp(iu"Y) + RD1h 
TfH 1 

X exp(- iu'!y)], for medium 1, 

1 ,. TD 
-- exp(- iu'!h01) n 2:.! 
TfH p=2 T~H 

x exp(i p~ Up_1.php_1.P) 

x [exp(iu~y) + R~" exp(- iu~y)], 

for medium m = 2,3, ... , m, 

[+~(U,h01»)2 = r(3(izouo~-\)-11 
L \ d(3 Ro e=Bx 

(2.8b) 

(2.8c) 

(2. ad) 

and (311 [lm«(3I1) :5 0] is one of the finite set of surface 
wave modes that satisfies the modal equation 

l/Rg = O. (2.8e) 

In the above expressions, the reflection coefficients at 
the i, i + 1 interface, for waves incident from above and 
below, are respectively (see Fig. 1), 

R~ = 0, Rf = (R.+1 .• + Rf!J)! (1 + Ri+1. iRf~), 

i = 1,2, ... , m, (2.9a) 

Rf{ = 0, Rf = (R._ 1 .• + Rf-~)! (1 + Ri-1,iRf-~), 
i = 0, 1, ... , m - 1, (2.9b) 

where R.+1 • i and R i- 1 •• are the Fresnel reflection co
efficients 

and 

RfH = Rf exp(- i2u i Hi ), Rfh = Rf exp(i2u;hi.i+1)' 

(2.9d) 

Ryn = Rf exp(- i2ull.), Ryh = Ry exp(- i2u ih H •i )· 

The transmission coefficients are 

Tf = 1 + Rf, 

TfH = 1 + RfH, 

~y = 1 + RY, 
and Tya = 1 + RyH. 
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(2. ge) 

(2.9f) 

The wave parameter for medium r is 

U,.(x) = [k ~ - (32]112, Im(u,.) :s 0, 

and 
U p.p+1 = up - U P+1' 

The transverse wave impedance is, for all y, 

Z(u,y) = (3/W€(x,y) 

and for medium r 
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(2. lOa) 

(2. lOb) 

(2. 10c) 

(2.10d) 

In a similar manner, the transverse component of the 
electric field E can be expressed in terms of its trans
form E(x,u). lrfthis case, the appropriate basis function 
is Z(x,y)~(u,y); thus, 

E,(x,y) = L; Ep(x,u)Z(u,y)~p(u,y) 
and 

E ,(x, u) = .c E, (X, y)+(u, y)dy, 

where L; is to be interpreted as in (2.6). 

(2.11a) 

(2.11b) 

The transform functions H(u, y) and E(u, y) can be ex
pressed in terms of the forward and backward wave 
amplitudes a(x, u) and b(x, u), respectively. 

Thus we define 

H(x,u) = a(x,u) + b(x,u),E(x,u) = a(x,u) - b(x,u). 

(2. 12) 
3. THE FORWARD AND BACKWARD WAVE 

AMPLITUDES 
The transform pairs (2.6) and (2.11) provide a con
venient basis for converting the partial differential 
equations (2. 3c) and (2. 5e) for E (x, y) and H (x, y) [in 
conjunction with the exact bounda'ry condition~ (2. 5a) 
and (2. 5d)] into a coupled set of ordinary differential 
equations for the wave amplitudes (2.12). To this end, 
we derive (directly from the transform pairs) the follow
ing completeness and orthogonal relationships. Thus 
the Dirac delta function o(y - Yo) can be expressed in 
terms of the transforms (2. 6) as 

o(y - Yo) = L; Z(u,y)+ p(u,yo)1/Ip(u,y), (3. 1a) 

where L; is interpreted as in (2.6). Using (2. 7a), the 
orthogonal relationship between the basis functions can 
be shown to be 

= (3.2~(32 [~q(U,y)Z(U,y) :y +p(u·,y) 

- +p(u.,y)Z(u,y) ..£... +q(U,y~Q() 
oy ~-oo 

{
O(U, u·), 

= 0ll.q~(u,u·) = 0p.q 
0 ...... , 

(3. '" (311' 

(3. = (311' 
(3. 1b) 

where (3" is a solution for the modal equation (2. 8e), 
p and q are equal to 0, m, or 8 and ° P. q is the Kronecker 
delta. 

To obtain the desired ordinary differential equations 
for the wave amplitudes a(x, u) and b(x, u), multiply 
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(2.5e) by \II1'(u*,y) and (2.1c) by Z(u*,y)\II p(u*,y) and 
integrate WIth respect to y over the interval (- 00, 00). 
Thus, for p = 0, m, or s we get 

_ fO aE Y \II pdy = i to _1_ (a 2H Z + k 2H .) 
-00 ax -«> WE ay 2 

X \II pdy + .c J m \II pdy (3.2a) 

and 

l oo aH z • roo 
-00 a;- Z\II pdy = t '-00 wEE yZ\II pdy. (3.2b) 

In (3.2) we express E,(x,y) and Hz(x,y) in terms of 
their respective transforms (2.6) and (2.11). However, 
since the basis functions l/I (u, y) and Z (u, y) l/I (u, y) do 
not in general satisfy the boundary conditions for the 
field components Hz (x, y) and E y (x, y), respectively, 
the expansions (2. 6a) and (2. 11 a) do not converge uni
formally at the interfaces h .. _1 ... (r == 1, .. . ,m). Hence, 
since it is not permissible in general to interchange 
orders of integration and differentiation, we apply 
Green's theorem in one dimension (or integration by 
parts) to the terms in (3.2) that involve differentiation. 
Thus, for instance, the first term in (3.2a) is given by 

m - Et ([Ey\llph;_I ... - [Ey\llp],.-;'_I)h~_I." (3.3a) 

and for the second term in (3. 2a) we can use the identity 

roo 1 a2H Loo 1 o2\11 p 
L - -2

z 
\II pdy == - H -- dy 

-<>0 E oy -00 E Z ay2 

- I; -m {[I -- \II + - - H -- - h' . aHz J [ 1 0\11 p] } 
oy P " .. _1... E Z oy " ...... 1... ..-1 ... .. =1. E 

(3.3b) 
On applying the boundary conditions (2. 5d) for Hz (X, y) 
and E y (x, y) as well as (2. 7) for l/I (u, y) and using the 
orthogonal relationship (3. Ib), (3.2a) reduces to 

dE p(x, u*) 
_....L-__ = if3*H p(x, u*) 

dx 

where the summation is interpreted as in (2.6). We 
have 

J
oo 0\11 (u*,y) 

Gpq(u*,u) = p Z(u,Y)l/Iq(u,y)dy 
-<>0 ax 

(3.4b) 

and 

Jp(X,u*) = .r: Jm(x,y)\IIp(u*,y)dy 

K\IIp(u*,y)o(x -xo). (3.4c) 

A similar treatment of (3. 2b) yields the equation 

where 

~ R8"/21TZo, 

N p(u) = \II p(u, y)/l/Ip(u, y) == (:~1I/21TZ m' 
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and the following relationship derived from (3.1b) has 
been used for u* ¢ u: 

d f3* C Z(u*,y)\IIp(u*,y)l/Iq(u,y)dy = ° = - Gpq(u*,u) 
dx f3 

Ne(u*) + Gqp(u,u*) 
Nq(u) 

J
oo oZ(u*,y) 

+ \IIp(u*,Y)l/Iq(u,y)dy 
-«> ax 
m 

- I; h~_1 .. \IIp(u*,h .. _1 .. )l/Iq(u,h .. _1 .. ) 
.. =1' . . 

x [Z"_1(U*) - Zr(u*)], (3.6a) 

Similarly, for u* = u = t.t~ it can be shown tha! 

d Joo - Z(u,y)\II~(u,Y)l/I~(u,y)dy == ° = 2G~~ 
dx-

+ .c az~:,y) [\II~(u,y)J2dy 
m 

- I; h~_1 r[\II~H [Z .. _1(u) - Z .. (u)], 
-r=1 • ,..-1,'" 

(3.6b) 

where 

J
OO oZ(u, y) 

---'-~ [\II~(u,y)]2dy 
-«> ax 

Thus (3.6b) can be used to determine G~~(u~,u~). 

We utilize the relationship between (3. Ib) and (3. 4b) to 
determine the general expression for G pq(u*, u). Thus, 
for u ¢u*, 

(3.7) 

Expressing the transforms H(x, u) and E(x, u) in terms 
of the wave amplitudes a(x, u) and b(x, u) [(2.12)], we 
obtain from (3. 4a) and (3. 5a) a set of coupled ordinary 
differential equations. Thus, for p, q = 0, m, or s, 

- ~ apex, u*) - if3*ap(x, u*) 

= I; S::(u*,u)aq(x,u) + I; S::(u*,u)bq(x,u) 

+ J p(x, u*)/2 (3.8a) 

and 

- ~ b (x u*) + if3*b (x u*) dx p , p , 

= E S~(u*, u)b q(x, u) 

+ I; St:(u*,u)aq(x,u) -Jp(x,u*)/2, (3.8b) 
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where E is interpreted as in (2.6a) and the transmis
sion and reflection scattering coefficients are defined 
respectively as 

(3.9a) 

and 

s~(u*, u) = St:(u*, u) 

_ .!. (Np(U*) * *) - Gqp(u, U ) + Gpq(u ,u) 
2 Nq(u) P. pO. m,ors. 

(3.9b) 
In view of the normalization used in this paper, it can be 
shown that 

(3.9c) 

and 

(3.9d) 

for p, q = 1, m, or s and C = A or B. Thus, (2.8) satis
fies the reciprocity relationships in electromagnetic 
theory. The scattering coefficients (2.9) may also be 
derived by imposing the continuity of H. (x, y) and E l' (x ,y) 
for any plane x = const. separating two multilayered 
structures whose electromagnetic parameters are E"(x), 
"'(x) and E"(x) + E"'(x)dx, ",(x) + ",'(x)dx, respectively, and 
with layer boundaries at hL, .. +l(x) and h ... 1'+l(x) + 
h~ .. +l(x)dx, respectively. Tnis procedure has been 
show to be rigorous. 3 

For any specific problem, G pq(u*, u) depends upon varia
tions of the parameters E" .. , "' .. , and h .. .. +1' Thus, for 
example we can express 0+ pi ax in (3: 4b) as follows: 

m d ] + E1 h~_l ... dh .. _1 ... +p(U,y) 

and a similar expression can be written for 
o2+ p(u,y)/axay. 

(3.10) 

4. THE SURFACE IMPEDANCE AND THE RELATED 
WAVEGUIDE PROBLEM 

In electromagnetic wave propagation problems, one 
often encounters layered structures in which one or both 
the bounding layers are regarded as perfect electric 
or magnetic walls, III E" --+ 0 or E"/ '" --+ 0, respectively. 
Thus, from (2.9) we get 

{
I, y = ho 1. perfect electric wall, 

RU= R :::: . 
1 0,1 _ 1, Y = ho l' perfect magnetic wall. 

. (4.1a) 
In this case, U o = 0 is not a branch point and the contri
bution from the branch cut integral Im(uo) = 0 vanishes. 1 

Similarly for 

R~_l = Rm• m- 1 

=~ 1, y:::: ~_:.m' 
1-1, y - hm- 1 ,m, 

perfect electric wall, 

perfect magnetic wall, 
(4.1b) 
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the contribution from the branch cut integral Im(u ) = 0 
vanishes since u m = 0 is not a branch pOint. m 

Furthermore, in problems of propagation over good 
conducting earth (or sea water) for instance, it is con
venient to characterize the interface ho 1 (or h m_1 m) 
by an approximate surface impedance (tangential elec
tric to magnetic field ratio) which is assumed to be in
dependent of the particular excitation. Thus, if Z sO is 
the surface impedance looking upward into the boundary 
y :::: hO.1' 

(4.2a) 

and the contribution from the branch cut Im(uo) = 0 
vanishes. Similarly, when Z sm is the surface impedance 
looking downward into the boundary y = h m-l, m' 

R~_l = (U m-l/WE"m-l- Z sm)/(Um-l/WE"m_l + Zsm), 
(4.2b) 

and the contribution from the branch cut Im(u m) = 0 
vanishes. Thus, when ,the bounding media are charac
terized by surface impedances (including perfect elec
tric or magnetic walls for which Z s = 0 or Y s = 1/ Z s 
= 0, respectively), the fields are expressed exclusively 
in terms of an infinite set of waveguide modes that 
satisfy the modal equation 1 

RrR~H = 1, i = 1, ... , m = 1. (4.3) 

For the special case when E" and /.l are independent of 
x and Y and in addition Z IS = 0, the structure is a wave
guide of varying height (a structure that is treated ex
tensively in the literature). It is interesting to note 
that the present analysis also provides a full wave solu
tion to the problem of scattering by objects of finite 
cross section embedded in the earth's crust (E"1 ".. E"o' 
"'1 ".. /.La) or in free space (E" 1 = E"o, "'1 = /.lo) (See Fig. 2). 

5. FAR FIELD SOLUTIONS 

To obtain the expressions for the magnetic field in a 
multilayered medium, it is necessary to solve the 
coupled ordinary differential equations for the wave 
amplitudes apex, u) and b p(x, u) [(3.8)] and substitute 
these results into the complete expansion for H If (X, y) 
given by (2.6a). This procedure simplifies consider
ably if the sources and observation point are at large 
liistances from the prinCipal regions of wave scattering. 
Noting that 

Ho(x,-u) = Ho(x,u)/Rgh 
and 

H",(x,-u) =Hm(x,u)/R~h, 

(5.1a) 

(5.1b) 

we can write the fields radiated into the semi-infinite 
media 0 and m as 

and 

Hm(X,y) = J;' Hm(x,u) exp(iyum)du m, 

y > ho,l' 
(5.2a) 

y < hm-l,m' 

(5.2b) 
The above exact expressions for the radiated fields are 
particularly conducive to integration by the method of 
steepest descent. In this section, we shall conSider only 
far field solutions that are deriVed through an iterative 
method. 2 The line source is assumed to be in free space 
(medium 0) at a large distance Po = (x~ + Y6)l/2 » l/k o 
from the nonuniform region - L < x < L, 
where Xo < - L .. 
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The boundary conditions for the wave amplitudes are 

b p(lXl, u) = 0, p = O,m,or s, 
(5.3a) 

and in view of the line source excitation, the wave am
plitudes are discontinuous at x = x o. Thus, we have 

p = 0, m, and s. (5.3b) 

Thus, neglecting wave scattering due to the nonuniformi
ties of the structure, we solve (3. 8a) for a (X, u) and 
substitute into (5. 2a). Integration of (5. 2af, using the 
steepest descent method yields the following expression 
for the primary fields in the nonuniform region 2 

(- L < x < L): 

(5.4a) 

In (5. 4a) R8 h l/lo(u, y) is given by (2. 8a). The amplitude 
of the primary wave is 

KWEo . 1 

Hb = - 2(2wk
o
po)1/2 exp[- z(koPo - "iw], 

Xo = Po sin8b, Yo = Po cos8b, 

and as a result of Snell's law 

(3i=k.,.sin8~ and u~=k.,.cos8~, 

(5.4b) 

(5.4c) 

r = 0, 1, ... , m. (5.4d) 

In the expression (5.4a), R8"'lio(u,y) is impliCitly a 
function of x since E, Ii- and h.,.,.,.+l are functions of x in 
the nonuniform region. Using (2. 6b), we determine the 
wave amplitude apex, u) corresponding to the primary 
field (5. 4a). Thus, 

a:(x,u) = HbR8h exp(- i{3i X)O(U-u')op.o 

==ab(x,u)o(u-u')op,o' (5.5) 

Substituting the above expression for a p on the right
hand side of (3, 8), we obtain the following solutions for 
the scattered wave amplitudes: 

L 
ap(x,u) = - exp[- i{3(x - L)] t S:$(u, ui)ab(x', u) 

x exp(i ~s' (3dX)dX' == exp[- i{3(x - L)] Apo(u, u i ) 

(5.6a) 
for x> L, and 

L 
bp(x,u) = exp[+ i{3(x + L)] t S~(u,ui)ab(x,u) 

s' 
X exp(- i I (3dx")dx' == exp[i{3(x + L)][i{3(x + L)] 

-L 

x BpO(u,u i ). (5.6b) 

for x < - L. 

To obtain the expression for the forward scattered 
radiation fieldH6(x,y), we substitute the expression 
ao(x, u) from (5. 6a) into (5. 2a) and integrate using the 
method of steepest descent. 2 Thus, provided that Aoo (u, 
u i) can be regarded as a slowly varying function of u, 
it can be shown that 

H6(x,y) = Aoo(Uf ,u i){3f(2w/kop)l/2 

x exp(i1T/4) exp(- ik op), (5.7a) 
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where 

(x - L) = P sin86' y = P cOS86 (5.7b) 

and 

(3f = k.,. sin8~, u~ = k.,. cose~. (5.7c) 

Hence, Aoo(uf , u i ){3f is the radiation pattern for the for
ward scattered waves. Similarly, the backward scattered 
radiation field is 

H8(x,y) = Boo(U b,U i ){3b(2w/kop)l!2 exp(iw/4) exp(- ikop), 

where 
(5.8a) 

- (x + L) = P sine 8, y = p cose 6 (5.8b) 

and 

(3b = k.,. sine~, u~ = k.,. cose~. (5.8c) 

In general the terms Aoo(u, u i) and Boo(u, u i ) [(5.6)] may 
be expressed in terms of infinite series. 4 The expres
sion for H m(x, y) [(5. 2b)] is identified as the lateral 
wave term. 2 For nondissipative media, for instance, 
this term corresponds to waves that emerge in medium 
m, traveling parallel to the interface h m- l ,m({3 = km' 
u m = 0). This contribution to the total magnetic field is 
associated with the phenomenon of total internal reflec
tion. 

The expression for the nth surface wave excited by the 
nonuniform structure is 

H~(x,y) = A~O(U~,Ui) exp[- i{3.(x - L)I/I~(u,y), 

x> L, (5.9) 

where I/I~(u, y) is given by (2. 8c), and similar express
ions may be written for the backward scattered surface 
waves. 

By placing the line source far from the nonuniform re
gion, it was only necessary to consider the scattering of 
uniform plane waves into the radiation, the lateral wave 
and the surface wave terms. In general, however, when 
the source is located near the nonuniform region, it is 
necessary to consider the entire spectrum of primary 
waves excited by the source. These are obtained from 
(3.8b) on neglecting the coupling terms and noting that 
the basis functions are also implicitly functions of x. 
Thus, 

a:(x, u) == - !£ exp(- i i" (3dX) 'Ii p(u, yo)U(x - x o) 
2 "0 

and (5. lOa) 

b:(x,u) == - ~ exp(i.( (3dX)'li p(U,y)U(X o -x), 

p = 0, m, and s, (5. lOb) 

where U(x - x o) is the unit step function. The above 
expressions (5.10) determine the primary fieldsHP(x,y) 
in this case. 

6. CONCLUDING REMARKS 

Full wave expressions for the electromagnetic fields in 
nonuniform multilayered structures are derived. The 
electromagnetic parameters E and Ii- as well as the boun
daries between the layers of the structure are assumed 
to vary along the path of propagation. The analysis em
ploys generalized transforms l that provide a suitable 
basis for a complete expansion of the transverse com
ponents of the electromagnetic fields. In general, the 
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field expansion consists of two infinite integrals (the 
continuous part of the wavenumber spectrum) which are 
identified as the radiation and the lateral wave terms 
as well as a finite set of surface wave modes (the dis
crete part of the wavenumber spectrum). In certain 
special cases, the contributions from one or both the 
infinite integrals vanish. When both the radiation and 
lateral wave terms vanish, the fields are expressed com
pletely in terms of an infinite set of trapped waveguide 
modes. In some special cases (two-medium problems or 
propagation over a nonuniform impedance boundary), no 
surface wave may exist and the fields can be expressed 
in terms of the one or two infinite integrals. 

By using the analysis derived in this paper a vast varie
ty of propagation problems such as propagation through 
the nonunifor'm layers of the ionosp'here and the earth's 
crust may be solved. Coupling into and out of artificial 
surface structures as well as mode coupling in non
uniform waveguides can also be determined by using the 
full wave solutions. The analysis also provides full 
wave solutions to the problems of scattering by objects 
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of finite cross section embedded in the earth's crust 
or in free space (see Fig. 2). 
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No restrictive impedance boundary conditions are used, 
and the sources and observation point may be located 
anywhere in the structure; thus, the analysis is particu
larly suited to the investigation of hardened communica
tion systems. It can readily be shown that the solutions 
are consistent with the reciprocity relationships in 
electromagnetic theory. 
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In the present paper we discuss some mathematical methods which are nearly-best-possible in order 
to extract as much as possible information from the numerical analytic continuation of the scattering 
data. All the questions related to the stability are analyzed; in this sense we explicitly show some 
cases where the continuity of the solutions on the data is very poor. Finally the error-bounds are 
extensively explored. 

1. INTRODUCTION 

The purpose of this article is to explore in a quantita
tive manner the rather precarious stability of analytic 
continuation problems for scattering data (including 
some in attempted use, which probably should not be); 
to expose in the specific case of scattering problems 
some nearly best possible methods of the first author 
and others which are in use in the general mathemati
cal field of ill-posed problems, and to give a critical 
analysis of some of the expansion methods found in the 
physical literature. 

Chew1 and Chew-Low2 were the first to emphasize the 
role of analytic continuation of scattering data in deter
mination of the pion-nucleon coupling constant! and of 
cross sections with unstable particles as targets. 2 Fol
lowing these two initial papers Frazer3 and Ciulli
Fisher4 pointed out the advantages of using conformal 
mapping techniques; more precisely, they mapped the 
cosine complex cut-plane into the unit circle. There
after, many authors applied the methods of analytic 
continuation to various phenomenological problems; 
among these we recall Lovelace,5 Ashmore e tal., 6 the 
Hamilton group, 7 . 8 Atkinson,9 and Levinger, Peierls, 
and Wong. 10, 11 Of course in these works the authors 
went far beyond the original proposals of Chew and 
Chew- Low. In fact, some phenomenological problems 
were attempted which would have required analytic con
tinuation of the data up to the cuts, i.e., up to the boun
dary of the analyticity domain. 

Bertero and Viano12 (in a short note which appeared in 
1965) recalled that analytic continuation of complex
valued functions is one of the classical improperly
posed problems in the sense of Hadamard; 13 i.e., it is 
completely unstable. However, this is one of the large 
class of improperly-posed problems which can be sta
bilized by restricting attention to those solutions satis
fying a certain prescribed global bound (see Ref. 14 
for references to the mathematical literature). 

In Ref. 12 the Hadamard three-Circle theorem and its 
extension (the Carlemann inequality) were used to give 
stability estimates for extrapolation of experimental 
data for nucleon form factors. Thereafter, Ciulli, 15.16 
Cutkosky and Deo, 17 .18 and Cutkosky 19 returned to 
these questions and proposed improved methods. Of 
course this list of references does not pretend to be 
exhaustive and we apologize to the authors who are not 
mentioned here. In these papers the authors, after 
mapping the analyticity domain into an annulus (Ciulli) 
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or an ellipse (Cutkosky-Deo), devise methods with much 
greater care regarding analysis of the stability. 

We feel, however, that several relevant points need a 
deeper analysis. In Sec. 2 we give a general mathema
tical formulation (which includes most of the continua
tion problems occurring in the physical literature) and 
introduce the concept of "best-possible stability esti
mate". In Sec. 3 we analyze this best possible stability 
estimate for many of our examples of physical interest. 

In certain cases stability can be shown to be so extreme
ly poor that we feel that such continuations from physi
cal data should never be attempted. For example, the 
best possible stability estimate for continuation up to 
the boundary, with a prescribed global bound on the 
derivative of the boundary functions, is at best only 
logarithmic, i.e., proportional to Ilog€ 1-1, where € is the 
data accuracy. On the other hand, continuation to pOints 
well within the domain of analyticity usually has a 
fairly satisfactory €A HOlder type stability (0 < .\. < 1). 
In all cases it becomes evident, however, that even the 
best possible stability is sufficiently precarious that 
one should proceed with great caution and use only nu
merical continuation methods which are in a certain 
sense "nearly-best-possible." 

In Secs. 4-6 we discuss two general classes of numeri
cal methods of the first author, least-squares methods, 20 
and method of partial eigenfunction expansions, 14.21 
which turn out to be "nearly-best-possible." Various 
portions of these methods were also introduced by 
Backus22- 25 and by Cutkosky.1 9 One fortunate property 
of these methods is that only one of the two numbers € 
(the data accuracy) and E (the global bound) is required 
for the computation. We should emphasize, however, 
that it is necessary to have knowledge of E in order to 
have error bounds on the accuracy of our approximation; 
moreover, this knowledge must come from information 
completely outside anything which can be discerned from 
the data itself. In Sec. 6 we point out the inflexibility of 
polynomial expansion methods, and in Sec. 7 we will try 
some conclusions. 

2. MATHEMATICAL FORMULATION AND EXAMPLES 
The usual problem is to apprOXimately determine by 
analytic continuation certain values of a function fO(x) 
which is holomorphic in the domain n shown in Fig. la, 
a cut x plane, but where measurements for f 0 are possi
ble only at data pOints in the segment r = [- 1,1] (or 
[- a, b] in general) of the real axis, which segment is 
called the phYSical region. We let t, the data set, de-

Copyright © 1973 by the American Institute of Physics 1037 
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note the set of data points a«;tually available and used 
in any particular instance. r may be all of [- 1,1] but 
in physically realistic situations it is quite often a 
finite subset of [- 1,1]. The boundary an should be 
thought of as consisting of both sides of both cuts, plus 
xoo+ and Xoo- (the points at «l for the upper and lower 
half-planes) _ 

Physically fO(x) may correspond to the differential 
cross section for a certain scattering process da/ dA, 
where A denotes the solid angle. One also encounters 
references in the literature to analytic continuation of 
the scattering amplitude A(s, x) itself, where s in the 
barycentric energy squared and x is the cosine of the 
center of mass scattering angle. In actual practice the 
fO(x) which we conSider, however, will usually not be 
exactly either of the above. One usually first adjusts the 
considered function and data quite a bit; one first sub
tracts off poles with known locations, or divides by non
zero analytic functions of the proper form to reduce 
certain unbounded behavior of our function at x ~ «l to 
more nearly bounded behavior, etc. (see Cutkosky-DeoI7). 
In this way one hopes to apply analytic continuation only 
to an unknown "background" function f O which is as 
small and as decently behaved as possible. 

Of course, other physically interesting analytic continua
tion problems, with different domains n and physical 
regions r, also occur in scattering theory. Henceforth, 
for the next several sections, we will attempt to refrain 
as much as possible from physical interpretations and 
terminology and to limit ourselves to purely mathema
tical considerations. 

Merely as a notational and mathematical convenience, 
we choose to work in certain bounded geometries ob
tained from the unboundect x-plane geometry by con
formal mapping. In Fig.1b we show the unit disc z
plane geometry, which seems most notationally c.on-
venient in many instances. In Fig. 1c we show the 
elliptical y-plane geometry employed by Cutkosky and 
Deo.17 .18 fu Fig.ld we show the annular ~ -plane geo
metry employed by Ciulli. 15 The specific details and 
formulas for these three mappings are available in the 
literature. 26 A function f (x) holomorphic in the x-geo
metry transforms into functions f(x(z», f(x(y», and 
f(X~» holomorphic in the z,y, and ~ geometries. How
ever, to avoid notational proliferation we adopt the 
rather loose convention of using the same symbol f for 
all three functions, and speak of the functions! (z),! (y), 
and f ~ ). LikeWise, we employ the same symbols for 

z. 

(a) 

y"". 

y-

(e) 

(d) 

FIG. 1. Geometries employed In the examples of Sec. 2. 
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the sets n, an, r, and r in the x plane and for their 
images under the z,y, and ~ mappings. 

The general mathematical formulation may be stated 
as follows: we desire to approximately determine an 
unknown element f 0 of a certain space X of functions f 
holomorphic on the given complex domain n; we call X 
the solution space. For each.! in X, Af denotes a cer
tain function on the data set r which can be approxima
tely measured physically. Let h denote the data func
tion actually measured on t as an approximation to 
Af o. The possible Af and h lie in a certain space Y of 
functions on t;we callA the data operator and Ythedata 
space. Of course Af and h are "vectors" or "discrete 
functions" when the data set t has finitely many pOints. 
In order to stabilize the problem one usually requires 
some sort of global bound on f 0; in most cases this can 
be interpreted as a bound on the boundary values of f 0. 

For each f in X, let Bf denote certain "boundary values" 
of f on an (this sometimes has to be interpreted in a 
rather generalized sense, and it is sometimes worth
while to consider other B, such as the tangential deriva
tive of the boundary values for example). The possible 
BI lie in a certain space Z of functions (or generalized 
functions) on an; we call B the constraint operator and 
Z the constraint space. 

We limit ourselves to a completely linear formulation; 
this includes most of the methods found in the literature. 
That is, we assume that X, Y, and Z are normed linear 
spaces, with norms II IIx' II ny, and II liz, that A is a con
tinuous linear operator mapping X into Y, and that B is 
a continuous linear operator mapping X into Z. 

We let ( ) denote a norm or seminorm on X (or some
times a family of seminorms) which will be employed to 
measure the solution accuracy. For example, (f) might 
denote the magnitude If (z 0) I, where z 0 is a fixed point 
of interest in n. 

Problem: Suppose that fO satisfies 

IIAfo - hll y ~ E, 

IIBloli z ~ E, 

(2.1) 

(2.2) 

where E is a "fixed" number and E is a "small" num
ber. We assume, but only for the moment, that both E 

and E are known. We want to find an element f 1 in X 
which" approximates" 10, in the sense that (f 1 - 1 0 ) 

is small when E is small (and when the number of data 
points in t is sufficiently high, although we choose not 
to explicitly indicate in our notation the possible varia
bility of t). 
Suppose f 1 is any other element of X satisfying the 
constraints (2.1) and (2.2). The error function f 1 - fO 
then satisfies \f 1 - fO) ~ 2M(E, E), where 

M{E,E) == suP{(f}:! E X and IIAfily ~ E. IIBlllz ~ E}, 
(2.3) 

and there is essentially nothing further that can be said 
about the size of (f 1 - 10). We call any decent upper 
bound for M(E, E) a stability estimate for problem (2. I), 
(2.2), and M(E, E) itself we call the best possible sta
bilityestimate. 

Before proceeding to the specific examples, it is "%rth
while to mention several common features of them all. 
The holomorphic functions f (x) [or f (z), f (y), f (C)} are 
all real on the intersection of n with the real x axis 
(or z axis,y axis, ~ axis) in the physical problems we 
are considering. In the z-geometry such functions have 
the Taylor series representation. 
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00 

I(z) = ~ xjzj, 
,~O 

(2.4) 

convergent for ZEn with real coefficients xi" In the 
y-geometry they have the representation 

00 

I(y) = ~ x,(Jlj(y), 
1=0 

(2.5) 

convergent for yEn with real coefficients Xj and where 
the (Jlj(y) are the normalized Legendre polynomials P, 
{orthonormal with respect to the weight /3(Y) = I on 
[- 1, I]}, or the normalized Chebyshef polynomials T j 
{orthonormal with respect to the weight/3(Y) = (1_ y 2)-174 

on [- 1, In, or some other system of orthogonal 
polynomials. In the ~-geometry the image r = {~ : I ~ I = I} 
is a symmetric 2-1 image of the original segment 
[-1, I] in the x-plane. The functions I (t) of interest 
must therefore be holomorphic on n = {~: 1 ., ~ < R}, 
real on r, symmetric on r about the real axis, and (as 
stated previously) real on the intersection of n with the 
real ~ axis. Such functions have the representation 

00 

I (~) = I) x/~j + ~-j), 
j~O 

convergent for ~ E n, with real coefficients xi" 

(2.6) 

In all the following examples AI and BI will denote the 
restriction of the function I to its values on t and on, 
respectively. Many other choices are, of course, possi
ble; AI could denote, for example, the derivative!' re
stricted to t. 
Our solution space X will always then be the space of 
all functions I(z) [or I(Y),/(~)] of the form (2.4) [or 
(2.5), (2.6)] and for which also a certain "boundary 
value norm" IIBlllz is finite. Notice that X will then 
be a real linear space, that is, a linear space over the 
real scalar field. Also Y and Z must be considered as 
real linear spaces, even though we are often dealing 
with complex valued functions. This sometimes leads 
to slightly more complicated notation than would be re
quired if complex coefficients were allowed in (2.4)
(2.6). 

Possible norms or seminorms (I) in all the following 
specific examples are the magnitude I I (z 0) I of I at a 
given point Zo in n, or the magnitude I!'(zo) I of the 
derivative at z 0' or the magnitude Il (f) I of any con
tinuous linear functional 1 on X, or the uniform norm 
Ilfll K of f on a given closed bounded subset K in n, etc. 
Also, the particular norm used on X is not of great im
portance, since it enters into the problem only qualita
tively; we may, therefore, always choose 

IIflix = IIBfll z · (2.7) 

We begin with examples using the supremum norms on 
t and on. 

Example La: Let n and r be the unit disc and the 
real segment [- a, + a] in the z plane as shown in Fig. lb. 
Let t = r and let X be the space of all functions f (z) 
hol~morphic in n, real on the real z axis, and continuous 
on n. Let Y be the space of all continuous real-valued 
functions on t, and Z the space of all continuous com
plex-valued functions on on. Let the norms for Y and Z 
by the supremum norms on t and on, respectively. 

That is, 

IIAfl1 y = sup If (z) I, 
MEr 

(2.8) 

Ilfllx= IIBfllz= sup If(z)!. 
"EoO 
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Example Lb: As in (Ia), except let the data set t be 
only a finite subset {d1 , ••. , d.} of k evenly spaced 
pOints on the segment r. In this case, Af and hare real
valued discrete functions on t. 

Example Ie: As in (la) and (lb) above except re
place the supremum norms by weighted supremum 
norms, with certain conti,nuous positive weight func
tions /3 and y defined on r and on on, respectively. 
That is 

IIAfl1 y = supi3(z) I fez) I and 
aEt 

IIflix = IIBfliz = supy(z) If(z) I. 
aEOO 

(2.9) 

We next consider examples using inner product norms 
on t and on. 

Example 2a: Let n and r once again be the unit 
disc and segment [- a"a], as shown in Fig.lb, and let 
t = r. Let X be the Hilbert space of all functions fez) 
holomorphic in n, real on the real z axis, and having 
L2 boundary values on on (in the sense of radial limits). 
Let Y be the Hilbert space of all real-valued L2 func
tions on r, equipped with the usual L 2 norm and inner 
product. Let Z be the Hilbert space of all complex
valued L2 functions on on, but considered as a real 
linear space, with an inner product equal the real part 
of the usual complex inner product. 

Let X borrow its inner product from Z; Le., (t, g) x = 
(B f, Bg) z' It is convenient to normalize so that the 
constant function fez) == 1 has norm 1 in all three 
spaces. Notice that X consists of all Taylor series 
of the form (2.4) with real coefficients x, such that 
I)j"::0IxjI2 < <Xl. 

Example 2b: As in (2a), except let t be the discrete 
data set {d 1> ••• , d.} and replace on t the L 2 integral 
norm of (2a) by the l2 sum norm here. 

Example 2e: As in (2a) or (2b), except replace the 
norms there by weighted norms. That is, 

(Af,Ag)y = 1 . f(z)g(z)/3 2(z) Idzl 
aEr 

(2.10) 

or 
• 

(Af, Ag)y = I) f(d,)g(dj )/3 2(dj ) 
j= 1 

(2.11) 

when t is discrete, and 

(t,g)x = (Bf, Bg)z = Re{l f(z)g(z)y2(Z) Idzl}, (2.12) 
ZEOO 

where /3 2(z) and y2(Z) are normalized to have total inte
gral (or sum) equal 1 on t and on. Usually i3(z) and 
'Y.(z) are assumed to be continuous and positive on all 
r and on. It is sometimes convenient, however, to let 
/3 (z) and y(z) tend to <Xl or 0 at a few special pOints such 
as - a and + a; z_, z+; zoo+' Z _. In this case, the detailed 
specification of what the sp~e Z of boundary functions 
is, or in what sense f assumes its boqndary value B f. 
becomes somewhat obscure. It suffices for our pur
poses to define the Hilbert space X to be the completion 
with respect to the norm (2.12) of the space of "poly- ' 
nomials" I)7~1 x,z, with real coefficients. 

Example 2d: Under conformal mapping of Examples 
(2a)-(2c) back into the x-geometry, one introduces an 
additional factor of Idz/dx I into the integral inner pro-
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duct involved in (2.10) and (2.12). For example,l(x) 
and g(x) have the inner product 

(f,g)x = (BI, Bg)z = Re J
XEao 

l(x)g(x)')I2(z(x)) IdZI 1dXI . 
dx (2.13) 

Notice that the required behavior of I(z) as Z tends to 
ao in the z-geometry imposes a restriction on the type 
of singularities which I(x) may have as x -+ ex) in the 
lower or upper half-planes. Thus, for example, the func
tion I(x) = sinx, will not be in X, even though its boun
dary integral (2.13) in the x-geometry may happen to 
be finite. Once again, it is best to keep in mind that X 
is the completion, with respect .. to the norm (2.13), of 
the space of "polynomials" EJ=l xj(z(x»j with real co
efficients. 

Example 3a: In the annular t-plane geometry of 
Fig. ld, let 0 = {t: 1 "" l t I < R}, r = {t: I t I = lJ, and 
ao = {t: I tl = R}. Let r = r and let X be the space of 
analytic functions 1m of form (2.6), with real coeffici
ents Xj and with finite L 2-norm on ao .. Let !lAII! y and 
II/lIx = IIB/li z be the L2 norms of I on r and ao res
~ectively, and let Y be the space of real L2 functions on 
r which are symmetric about the real axis. 

This example, is, of course, a special case of Example 
(2c) after conformal mapping, but it is particularly 
simple and well suited to expansion methods since the 
basis functions (t j + t-j ) are orthogonal with respect 
to both the Y and the Z inner products. The norms 
involved can thus be written as simple quadratic sums 
of the Fourier coeffiCients xi' That is, 

(2.14) 

(2.15) 

(2.16) 

Example 3b: Under conformal mapping into the y
geometry of Fig. lc, the basis functions t j + t-J trans
form into the Chebyshef polynomials TJ(Y) and the 
unweighted L 2 inner product integrals on r and ao 
transform into inner product integrals in the y-geometry 
with the weight functions t3 2(y) = Idt/dyl and ')I2(y) = 
Idt/dyl. Now J3(y) is bounded, positive and smooth on 
ao, but ')I(y) on r equals a constant times (1- y2)-1/4. 

Next we consider examples introduced by Ciulli and by 
Cutkosky-Deo, which use integral inner product norms 
on t and which (at least implicitly) employ various 
other norms on ao. 

Example 4a: In the y-geometry Cutkosky and Deo1? 

consider a weighted L 2 inner product on t = r with 
weight function t3(y). Functions I(y) holomorphic on the 
ellipse 0 can then be expanded as I(y) = Ej=o x <P (y), 
where the (9j(Y) are the polynomials orthonormal for 
this inner product. The classical theory of polynomial 
expansions, as described by Walsh,27 then establishes 
convergence properties for such expansions which are 
closely analogous to the well-known convergence pro
perties of the Taylor series expansions. The regions of 
convergence, now, instead of being circles of radius p, 
are the ellipses Ep withfoci:l: 1 and "radius" p = semi
major + semiminor axis. The moduli I<PJ(y)1 are essen
tially proportional to pi on E p' The expansion converges 
inside the largest ellipse within which I is holomorphic. 
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Let us say this ellipse is Ell = ao for our I of interest. 
For each li > 0 and each 1 "" p < R - li there exists a 
constant M = M6 p,f such that the truncation error after 
n te~ms is bounded on E p by M[pl (R - li)]". Moreover, 
the Jth coefficient then satisfies lim sUP(xj) I/j = 11 R. 

Cutkosky and Deo assume that the x j are Gaussian ran
dom variables with mean zero and variance vOR-2j 

(See Ref. 17). They also assume that the coefficients 
hj of the data function hey) on t are Gaussian random 
variables. Moreover one is implicitly dealing here 
with the conditions. 

IIAlo - hI! y = (It t3 2(y) I/O(y) - hey) 121dYly!2 
=(f Ixy - h j 12) 1/2 "" E, 

j=O 
(2.17) 

(2. 18) 

Example 4b: Ciulli 15.16 considers the conformally 
equivalent problem in the t geometry. In Ref. 15 his 
nor!D on t is the supremum norm; ill Ref. 16 the norm 
on r is the L 2-norm. He works with linear combina
tions of the basis functions (t j + ~-j); these transform, 
under mapping into the y plane, into the Chebyshef poly
nomials. Moreover, the baSis functions «J + t-j ) be
have asymptotically like ti as t -+ oc, or j -+ ex) for 
I t 1 > 1, and this suffices in the proofs for much of 
Walsh's theory. 

Ciulli16 assumes that the (Jth derivative of the boundary 
function B 10 ft) is a HOlder continuous function on an 
with exponent 0 < Ol < 1. In other words, he is dealing 
with the HOlder norm 

I j(P )(t 1) - 1(P>(t 2)1 
It 1 - t21a 

(2.19) 

In this case, Ciulli is interested in analytic continuation 
with uniform accuracy all the way to the boundary; in 
other words, he is using the supremum norm on n, as 
the norm to measure solution accuracy. 

In example (4a) it is quite possible that the boundary 
function Bf(y) = Ej'=o xj<PJ(y), where the coefficients 
satisfy (2. 18),does not converge anywhere on an. 
Mathematically speaking, this should not bother us at 
all, B f is then merely some sort of "generalized func
tion" on ao. It is a well-known mathematical device to 
define generalized functions on ao in terms of formal 
series which converge in 0, but perhaps not on an. 
Identical considerations hold for Example (4b). 

3. QUANTITATIVE ANALYSIS OF THE 
THEORETICALLY BEST POSSIBLE STABILITY 

At the outset, we point out that stability can be proved 
for the above example, in every Single instance, by em
ploying the following elementary theorem on compact
ness (KeUey28): Let I] be a continuous map on a com
pact topological space into a Hausdorff topological 
space. If I] is one-to-one, then its inverse map 1]-1 is 
continuous. That is, we may prove that M(E, E) tends 
to zero as E -+ 0 (and as the number of data pOints tends 
to 00 when t is discrete), with E being fixed. See Mil,.. 
ler20 and Miller-Vian029 for two worked out examples. 
Such results are essentially useless, however, for they 
are completely qualitative and can give no estimate at 
all on the smallness or largeness of M (E, E). In fact, 
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such results may often give the wrong impression in
dicating stability in situations where the stability is so 
poor as to be almost nonexistent. The purpose of this 
section is to quantitatively examine the stability of the 
analytic continuation examples mentioned above and to 
draw certain conclusions from that examination. We 
assume now that the solution error seminorm of inter
est is the pOintwise error (I) = I/(z)1 at various pOints 
z in n. We begin with problems of analytic continuation 
to points well inside n. 
Consider first the example !la) using the unweighted 
supremum norms and with r being the whole arc r, 
rather than a finite subset. Here we may apply the 
Carlemann inequality12: if/(z) is analytic on n-r, con
tinuous onIT,and I/(z) I ~ € on r, I/(z)I" E on en, 
then 

(3.1) 

where w(z) is the harmonic function on n-r which is 
continuous on IT and equals 1 and 0 on r and en, respec
tively. This inequality gives the best-possible stability 
estimate for Example (la) (or any conformally eqUiva
lent example) except for a factor of at most 2 (at least 
at points z on the real axis and for a whole sequence 
of values €/ E tending to zero). To see this it suffices 
to consider the functions 1m = (1/2Ri) (ti + t-i ) in the 
conformally equivalent t-planf' geometry of Fig. Id. 
These satisfy I/(t)1 .. € = R-i on r, I/ml .. E = 1 on en, 
and yet for 1 .. t ~ R on the real axis we have I/(t)1 Co 

i(1 t 1/ R)i = i€WW, since wet) = log(R/1 t i)/logR in this 
geometry. For t off the real axis with 1 < I t I .. R, we 
have I/(t)1 ;;. M1 - It 12j)€w(,} which is nearly the same. 

With unweighted L 2-norms on en and on t = r = [- a,a] 
in the z-plane geometry [Le., with conditions of Example 
(2a)], Miller 20 obtains the stability estimate 

I/(z)I" [c log(E/€) + (1_lzI2j-1/2]€w(ZJE(1-w(a>J, (3.2) 

where c is a computable constant depending only on a. 

The method of partial eigenfunction expansions allows 
one to evaluate the best possible stability estimate 
exactly (except for a factor of at most 2) in certain 
cases with particularly simple orthogonal expansions. 
In Sec. 6 we apply this technique to Example (3a) and 
obtain a bound [see (6.28)], which after simplification 
looks much like (3.2). Prescribed L2 boundS on deriva
tives of I on on, it can also be seen, do not improve the 
stability estimate greatly. 

Notice that the error-bounds obtained by Ciulli15 and 
by Cutkosky and Deo, 17 in all their work using the 
Walsh theory of optimal polynomial convergence, con
tain a dominant term of ::e E( I t 1/ R) a [consider the geo
metry of Example (3a)], where the truncation order Ol 

is usually chosen such that (1/ R) a::e €/ E; thus the do
minant term is once again ::e €W('JE[ 1-",(0]. 

We continue next to problems involving analytic continu
ation all the way to the boundary. Ciulli 15 obtains sta
bility estimates for I(t) on en [Example (4b)]; the com
plicated derivation somewhat obscures the fact that the 
stability obtained is extremely poor. The results of 
Miller 14 yield stability estimates to the boundary in 
the geometry of Example (3a), but with the L2 bound 
IIDk/l1 .. E = 1 for the kth derivative with respect to 
" = argt on en (the estimates there were actually for 
harmonic continuation on the unit diSC, but the changes 
needed are minor). The bound obtained for I/(t)1 on en 
is essentially proportional to [Ilog€ l/logR]1/2- k. 
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To prove that the best possible stability is truly as poor 
as our bounds seem to indicate, we switch to a simple 
pathological example. In the t plane geometry the func
tion I(t) = (E/2jkRi)(ti + t-j ) satisfies IDk/1 .. E on (in, 
and I II .. € = ER-i on r. Nevertheless, 

11m I"" E/2j-k = ~ (IIOg(€/ E)I) - k 
2 logR 

on an. Such logarithmic continuity is so poor as to be 
intolerable in any physical problem. For example, with 
k = 1, E fixed, and €/ E initially equal 10-1, an increase 
in solution accuracy by factor of 2,3,4, ... would re
quire increase in the data accuracy to €/E =: 10-2,10-3 , 

10-4, .. " etc. 

Let us obtain an estimate of R for the specific case of 
the nucleon-nucleon scattering. In this case the thres
holds of the branch-cuts are located at x± =: ± [1 + (21-'2/ 
k 2 )] (see Ref. 1), where I-' is the pion rest-mass and k is 
the barycentric momentum. For geometries with the 
thresholds x. of the cuts quite close to ± 1 (Le., for 
high energies) we may use the apprOXimate formulas 
(10) and (24) of Cutkosky-De018, to apprOXimate the 
parameter R of our conformal mapping. In this way, we 
get for the parameter R the value R ~ 1. 77 for an energy 
of 300 Mev in the Lab. system, the value R "" 1.4 for an 
energy of 103 Mev and the value R "" 1.14 at an energy 
of 104 Mev. 

Now we can try some conclusions. 

(A) Analytic continuation all the way to the boundary 
has such poor stability that it should not be attempted 
in a physical situation. The authors can think of no 
reasonable conditions for 10 on en, other than assump
tions (which are not considered in the present discus
sion) that 10 be bounded and holomorphic on a much 
larger domain, which would raise this stability to a 
tolerable level. 

(B) The best possible stability estimate in all our ex
amples can never be much better than £"'(2 )El1-"'(2)J (which 
is nearly the be~t possible estimate in case of supre
mum norms on r = r and an). This stability is also 
very poor at points near the boundary (Le., at z where 
w(z) is fairly small). Therefore, one should not attempt 
analytic continuation to pOints near the boundary. 

(C) At pOints well interior to n, it is sufficient in 
all the above examples to assume that the best possible 
stability estimate is essentially of the form C £W(2) 

X E[ 1-w(&)] (provided enough data points are used). 

Let us return to the nucleon-nucleon scattering con
sidered above and obtain an estimate for w(x) in this 
case. Here the position of the poles in the cos" plane 
is given by xl = ± (1 + 1-'2/2k 2 ) (see Ref. 1). The exact 
w(x) is the harmonic function which takes the value 1 
on the physical region (Le., on the interval [-1, + 1]) 
and the value zero on the left and right cuts [recall that 
the pOSition of the cut thresholds is given by Xi = 
:I: (1 + 21-'2/k 2)].Let us estimate the value w(xf) at high 
energies where the thresholds of the cuts become 
nearer to the physical region. In this case we may 
approximate w(x) (in the gap between + 1 and xJ by the 
harmonic function w*(x) which takes boundary value 
w*(x) = 1 on (- QC + 1] and boundary value w*(x) =i 0 on 
the right-hand cut. Since the boundary values of w* 
differ from those of w only at boundary pOints on (- ex), 

- 1], which are relatively speaking quite distant from 
this gap, simple estimates reveal that the error w*- w 
is small in the gap. 
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Now we can say by symmetry that the value w*(x) on 
the vertical line at the middle of the gap is w(x) = -!. 
A simple use of the maximum principle on the vertical 
strip 1 .:; Rex .:; ~(1 + x) then establishes that ~ < w*(xe) 
< 1. Thus at high energies the Hl:ilder coefficient w at 
the point of interest x! is nearly equal the value w*(xe) 
which can be reasonable estimated '" f. 

(D) The stability of all analytic continuation problems 
of scattering data is sufficiently precarious that it is 
necessary to use "nearly-best-possible" methods; both 
for generating the approximation f1 and for generating· 
bounds on the error <f1 - fO). 

A method is "nearly-best-possible" if it always gives 
us a fl for which the error <fl - fO) is nearly bounded 
by the best possible stability estimate [Le., it is .:; CM 
(E, E) where C is a constant not too much greater 
than unity]. Since the stability derives exclusively from 
the constraints (2.1) and (2.2), one way to insure this 
is to design methods which always give us a solution 
satisfying nearly the same constraints 1£, E as the un
known fO. Such methods will then be completely inde
pendent of the particular seminorm < ) used to measure 
the solution error. In the next sections we consider 
two such methods which are computationally efficient. 

4. LEAST·SQUARES METHODS 

The proofs of the following results may be found in 
Ref. 20. Consider the general problem (2.1), (2.2) when 
X, Y, Z are real Hilbert spaces, with (2.7) also holding 
for the moment. We will keep Example (2c) in the back 
of our mind as the typical example. We begin first 
with the methods in an infinite dimensional setting be
cause the exposition is clearest in that setting, later we 
discretize to a finite dimensional problem and all com
putations reduce to simple matrix calculations. 

A. The method in general Hilbert space 

If fO satisfies (2. 1) and (2.2), then it also satisfies 

IIAfo - hll~ + (E/E)2I1BfOIl~.:; 21£2. (4.1) 

Conversely, any f satisfying (4.1) satisfies (2.1) and 
(2.2) except for factors of at most $. If we let M1(E, E) 

FIG. 2. The boundary curve at. 

(f,E) 

(?:,E) 

(E.WE) , EWE» 

(E:X,E X) 
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denote the supremum of <f) with respect to (4. 1) with 
h = 0, then 

(4.2) 

Method 1,' Let our approximation f1 be that element 
of X which minimizes 

IIAf - hll~ + A2ItBfll~ (4.3) 

with A = 1£/ E. It is the solution of the normal equation 

Cf == (A*A + A2B*B)f = A*h. (4.4) 

In the present case, (2.7) implies B*B = I; this is not at 
all necessary in general, it merely insures that C is 
invertible. 

If there does exist an fO satisfying (2.1), (2.2) as claim
ed, then fl must satisfy the a posteriori compatibility 
check. 

(4.5) 

Moreover, (fl- fO) satisfies (4.1) with h = 0, so 

(4.6) 

Hence this is a "nearly-best-possible" method. 

Suppose <f) is of the form Il(f) I, where 1 is a real con
tinuous linear functional on X. The .Riesz representa
tion theorem says that every continuous linear function
al on a Hilbert space has a unique representation as an 
inner product, Le., there exists a unique v in X such 
that 

l(!) = (/, vh. (4.7) 

Moreover,M1(E,E) is exactly computable in terms of 
v and C-1. We have 

(4.8) 

The preceding formulation has the disadvantage that 
the error bound 1£ and the constraint E must both be 
known. We show now that a satisfactory apprOXimation 
policy requires a knowledge of only one of these num
bers. Let us call a pair of numbers (1£, E) permissible 
if there exists a f in X satisfying (2.1) and (2.2), and 
let S denote the set of permissible pairs in the plane. 
It turns out now that the solutions fA of the normal 
equation, as A increases from 0 to ce, give complete 
information concerning which pairs are permissible. 
Let 

EA == IIAfA - hll y , 

EA == IIBfJ z , 

(4.9) 

(4.10) 

where fA is the solution of (4.4). Clearly fA mini
mizes IIAI - h II y with respect to the constraint liB Iliz 
.:; E A and likewise minimizes liB III z with respect to the 
constraint ItAI - hll y .:; EA' Also, EA and E A are con
tinuously increaSing and decreaSing functions of A. Thus, 
S is exactly the set of points which are above and to the 
right of the curve (E A' E A)' 0.:; A .:; ce, as shown in Fig. 
2. Moreover, S is a convex set, hence computation of 
only a few points (E A' E A) on its boundary curve should 
give a good idea of its shape. 

Recall that we are conSidering a particular element 
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f O• Let E and E denote the exact values IIAfo - hll y 
and liB fO II z , respectively. 

If good upper bounds E and E are known for both ! and 
E, then we may either let our approximation be f(tIE) 

as in Method 1, or 

Method 2: Let our approximation jI be any fA 
whose corresponding (EA" Ex) touches the shaded area 
in Fig. 2. The error is then bounded by (jI- f O) ~. M X 

(E + E,E + E) ~ 2M(E, E). 

Method 3: Suppose a good upper bound E for '£ is 
known, but none for E. Let our approximation f1 be that 
element in X which minimizes liB fll z with respect to 
IIA f - h II y ~ E. That is, let jI = fA', where ~ I is the 
value such that E A' = E as shown in Fig. 2. Since EA is 
monotone and continuous we can solve for the desired 
Lagrangian multiplier ~ I by a variety of iterative root 
solving methods, interval halving for example. Now 
E .. E A" thus the error is bounded by (jI- fO) ~ 
M(E +!, E A, + E) ~ 2M(E, E), which is essentially opti
mal with respect to the given information, even though 
E is unknown. 

B. The discretized problem and methods in general 
We replace the infinite dimensional X by an (n + I)-di
mensional "approximating subspace" X,,+1 C X, with 
basis elements cpo, cp 1, cp 2, ••• , cp". By" approximating 
subspace" we mean that every f of interest has an 
approximation f in X"+1 such that Af ~ Af and (f - f) 
s:::: 0 (for all ( ) -of interest) to within aesired accu-racy, 
and such that IIBfliz is either.;; or ~ IIBfllz. Thus jO, 
for example, mignt satisfy -

IIA[O - hll y ~ LIE, 

IIB[Ollz ~ LIE, 
(4.11) 

and the best-possible stability estimate on X,,+ 1 will be 
approximately that on X. 

We are going to neglect all these discretization errors 
since they can be made negligibly small by making n 
sufficiently large. That is, we assume that f O and all f 
of interest actually lie in X,,+ l' and that fO still satis
fies (2.1), (2.2). One then merely proceeds with the 
above least squares method but with X replaced by 
X,,+1; this is the general discretized method. 

All computations reduce to linear calculations involving 
the basis coefficients. The general f has the form 

(4. 12) 

where the coefficient vectors x vary over the para
meter space R'H 1 of all (n + I)-dimensional column 
vectors with real components xi' We equip Rn+1 with 
its usual Euclidean inner product and norm. We define 
maps <l from R"+ 1 into Y, and CB from R"+ 1 into Z, in 
the natural way 

(4. 13) 

Conditions (2.1) and (2.2) now become 

(4. 14) 
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where XO is the coefficient vector of fO. The (n + 1) 
x (n + 1) real matrix a*a is defined by 

(a*ax y) = (A(x cpo + ... + X mn) 
'R,,+l 0' flY , 

(4.15) 
A(y cpo + Y cp 1 + ... + y cpn» ° 1 n Y 

for all x,y in Rn+1. Letting x and y be all zero except 
for values 1 in their ith and jth component, respectively, 
we have 

(4. 16) 

Likewise CB*CB is the (n + 1) x (n + 1) real matrix such 
that 

<l*h is the vector in Rn+ 1 defined by 

(a*h, y) Rn+1 = (h, <ly) y for all y in R"+ 1, 

(a*h)i = (h,Acpi)y. 

(4. 17) 

(4.18) 

Any iinear functional on X,,+ 1 has an immediate repre
sentation as an inner product on R"+ 1 

(4.19) 

where y is the vector in Rn+l with components 

Yo = l(cpO), .. ',y" = l(cpn). (4.20) 

We assume that one can somehow evaluate the above 
terms by numerical means, and also Ilh II ~. All else 
is merely matrix computation on R"+1, replaCing the 
X,f,J0,A*A,B*B,A*h,f, and v of (4.1)-(4.10) by Rn+1, 
x, x O, a*<l, CB*CB, a*h, x A, and y here. 

Notice that evaluation of the (EA' E A) is also just a cal
culation in Rn+1: 

(4.21) 

Ex,amPle: We work out Example (2c) in ~etail, with 
the dIscrete data set t = {d l' ..• , d II} and Wlth (f) = 
I Ref(z 0)1 at some fixed z ° of interest. We introduce 
the functions cpO(z) = 1, cp1(z) = Z, ••• , cp,,(z) = z" as 
our approximate basis. If {l(z) is nonzero and very 
smooth, then n usually does not have to be very large 
at all to make the discretization errors completely 
negligible, for example see Ref. 20, p. 65. We can also 
allow singularities like (z - zJ-1I2 in {l(z), but this 
tends to make n quite a bit larger; we therefore feel 
it would be best to take care of these Singularities in 
the original formulation of the problem, by adjusting 
appropriately the function f(z) originally. 

One initially computes 

" (a*a)ij = I) (d v )i+ifj2(dv ), 
",,1 

i,j = 0, 1, .. . ,n, 
'(4.22) 

(fl*{l)ij = Re 1 zJz i y 2(Z) I dz I, 
ZEilO 

i,j = 0, 1, ... , n, 
(4.23) 

" Ilhll~ = L; Ih(d v )12{l2(dv ), 
v=1 

(4.24) 
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II 

(ct*h); = L; h(d)(d v )i{32(d v )' i = 0, 1, ... ,n, 
v=l (4.25) 

i = 0,1, .. " n (4_ 26) 

using numerical integration on (4.23). All else is ma
trix calculations; one proceeds to solve the canonical 
equations 

(4.27) 

by a Gaussian elimination computer program (Cholesky 
elimination would be better here). 

Since a decent upper bound E for the true If will usually 
not be known, we adopt the strategy of Method 3. We 
solve (4.27) for a variety of ;\, and plot the (£ A' E A) ob
tained on a diagram like Fig. 2 with linear interpolation 
in between, to get a preCise idea of the shape of the 
boundary curve of S. Since the matrix C>..l will be readi
ly available from the direct elimination solution of 
(4.27), we can also compute the best-possible (but for a 
factor of../2) stability estimate M 1(£, (E/;\,» = 
,f2 E(C>..l y, y) 1~~1 perhaps at many points z 0' Interval on 
A, then givesRus a good approximate value of A', and we 
take xA' as our approximation. 

Notice that we cannot discover an upper bound for If 
from the data, but only the exact lower bound E A,. 

5. EXACT DISCRETIZATION USING REPRODUCING 
KERNEl30 

There is one discretization which is exact for our 
least-square methods when Y has finite dimension k. 
It is imperative in this section that the two norms IIflix 
and liB fll z be equal. Let (A J) j denote the jth component 
of the k-dimensional vector Af; since it is a real con
tinuous linear function of f, there must exist a unique 
element uj in X such that 

for all f in X. (5.1) 

Let £ be the subspace of all linear combination of these 
u1, .. " uk. Now for each f in X, let f denote its ortho
gonal projection onto.£. Sincet - fis orthogonal to .£, 
we have 

(ADJ = (AJ)J + (A(t - J)j = (AJ)j 

+ (t - f, ujlx = (AJ)j, 'v'j. (5.2) 

In other words, for every f not in .£, its projection f 
onto £ has the same value Af = Af and, moreover,nas 
smaller norm. -

It is thus immediately obvious that the solutions f A of 
the least squares problem (4.3) all lie in the finite 
dimensional subspace.£. Thus, if one discretizes by 
using u 1, .•• , Uk as our approximate basiS, and solves 
the canonical equations for the discretized problem, 
then the solution fA obtained is the exact least- squares 
solution not only for.c but also·for X. 

For the sake of error analysis we may want also to 
include in our approximate basis the element v associ
ated with our linear functional 1 and corresponding 
seminorm (f) = Il(!)1 = (f, v)x' More generally, we 
may have several linear functionals of interest, say 
11' ... , lp. These then also have representations as 
inner product 

lj(f) = (f, vj)x for all f in X, j = 1, '" ,po (5.3) 

Let .£ 1 be the subspace of all linear combinations of 
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u 1, ••• , Uk, v!, ... ,vP; one sees immediately that for 
every f not in .£ l' its proj ection f onto .£ 1 has the same 
values A[ = !,f, 11 <!.) = 11 (f), ... , 1 p([) = lp(J) and, more
over has smaller norm. Thus,if one discretizes by using; 
u 1, ... ,Uk, vI, ... , v p as our approximate baSiS, and 
solves the canonical equations and computes the sta
bility estimates M1(£, E) = ../2 E(CyvJvi )I/2,j = 1, ... ,P 
for this discretized problem, then the f>.. and M 1(£, E) 
obtained are the exact least squares solution and the 
best-possible stability estimates not only for .£ 1, but 
also for X. 

A. Numerical computation of u l 
••• '. uk Vi •••• , vP 

Consider any linear functional 1 which we wish to re
present as an inner product l(f) = (f, v)x' If an ortho
normal baSis 1/1 0,1/11' ••• for X is available, the com
putation of the coefficients Yo' y l' .. of v with respect 
to this basis is automatic; as in (4.19)-(4.20), we have 

00 

= L; xvYv = (f, v)x' (5.4) 
11=0 

Thus the coefficients y v must be given by 

Yo = 1 (1/1 0), y 1 = 1 (1/11), •••• (5.5) 

If an exact orthonormal baSis is not available then we 
can proceed to construct an approximate one by numeri
calorthogonalization. That is, we begin with an "approxi
mate basis" cpo, cp 1, ... , cpn as before. Using Gram
Schmidt orthogonalization, one then construct on ortho
normal bases 1/1 0, 1/1 1, ••• , 1/1 n for X ,,+1' Therefore, the 
element 

is the projection onto X,,+1 of the desired v, and l(f) = 
([, y) x for all [ in Xn+l' -

In this way we can construct ~1, ... , !!k, yl, ... , yP 
which are the projections onto X 1 of the desired 

n+ 1 
u 1, ... , V p• If (k + P) < (n + 1), then we can USe!! , ... , 
vP as our apprOximate basis and work the discretized 
problem. Clearly, the results fA and M 1 (£, E) obtained 
will be exactly those which would have been obtained if 
one had instead worked the discretized problem using 
cpo, ••. , cp" as our approximate basis; the advantage is 
that the dimenSionality of the canonical equations has 
been reduced with little effort from (n + 1) to (k + Pl. 

Example: Consider Example 2b. The ith component 
of Af is (Af)i,= f(d i ), i = 1, ... , k, where d i is the ith 
datapointinr. Now 1/10 = 1, 1/I 1 =z, 1/I2=z2,"'is 
an orthonormal basis, thus 

The function u; 

(5.8) 

is called the reproducing kernel31 for the point d i , be
case of the property that integration with respect to it 
on an reproduces the value of f at d il i.e., 

f(d;) = fao fez) u(d p z) dz. (5.9) 
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Despite the fact that use of the reproducing kernels 
u l , ... ,u., vI, ... , vP as basis yields an exact discreti
zation of the least squares methods, it is often much 
more convenient (at least in the case of Example 2b to 
use the approximate basis qJ 0 = 1, qJ I = z, qJ 2 = Z 2, ••• , 

qJn == zn instead). We need only take n proportional to 
log(E/ E) to make the truncation error essentially negli
gible. On the other hand it seems that we should take 
k proportional to [log(E/ E))2 in order to make negligible 
the effect of using a finite data set t ;0' r (see Ref. 20 
for details). 

6. METHODS OF PARTIAL EIGENFUNCTIONS 
EXPANSIONS 

Suppose that we have available for X a basis tJ; 0, ljI 1, .•. 

which is simultaneously orthogonal with respect to both 
the Y and the Z norms, i.e., 

(AljI i, AljIj)y ;;: (A*AljIi,ljIjlx = aJa jj , 

(BljIi,B1/Ij)Z;;: (B*Blj;i,ljIj)x = bJa/j . 

(6.1) 

(6.2) 

In that case, fO, the general f, and also h can be ex
~anded in terms of this basis, with Fourier coefficients 
txy}, {xj }, and {h j }: 

00 

f=L;x.ljIj, 
j=O J 

(6.3) 
h = h +!! = L; h.(AljIj) + fl, 

- - Qj#J J -

where h is in the range of A and !! is in its orthogonal 
complement. -

Thus (2.1) and (2.2) become 

IIAfo - hll~ = IIAfo - ~lIj + II ~ III 
=t~ (xy-hj)AljIjll~+ 1I~1I~";E2, (6.4) 

liB fO II ~ = II tl XJBlj;jll ~ .,; E2. (6.5) 

Thus the analysis reduces completely to a consideration 
of Fourier coefficients. We have the weighted quadratic 
sums 

L; (a /E)2(xO - h )2 .,; 1, 
( 

00 ) 1/2 
)=O} j } 

(6.6) 

(f (b /E)2(xO - 0)2\ 1/2 .,; 1, 
j=O) j J (6.7) 

and we assume that the basis has been prearranged 
~uch that the ratios alb j are decreasing and also J, 0 as 
J~r:I). 

We now decompose each f in X precisely into a low 
order part f L and a high order part f H' 

a' 00 

f= h + fH= L; XjtJ;j + L; Xjljli, 
j=O j;a~1 

(6.8) 

where a is the largest integer such that (aa/ E) '" (b j E). 
With this decomposition we notice, using (6.6) and (6.7), 
that 

(6.9) 

for every low order part f L and 
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(6.10) 

for every high order part f H' 

Method I': We let our approximation j1 be the low 
order part ha of the Fourier expansion of the data 

a 

f1 ;;: h = L; hjljl j . 
a j=O 

(6.11) 

In other words, we have used the Fourier coefficients 
h j from (6.6) for the components where the weight 
(a,l/ E) is the larger, and we have used the Fourier co
el1icients 0 from (6.7) for the components where the 
weight (b / E) is the larger. 

From (6.9) and (6. 10) one obtains the following results: 

max{L(E,E),H(E,E)}";M(E,E)"; L(E,E) + H(E, E), 

where 

L(E,E) = suP{(fL ): IIAhlly"; E}, 

H(E,E) = suP{(fH): IIBfHllz "" E}. 

(6.12) 

(6. 13) 

(6.14) 

Moreover, if (f) is a linear functional Il(f)I, then 
L(E, E) and H(E, E) can be exactly evaluated. We have, 
using the Schwartz inequality 

(h) = I'i; xjl(ljIj) I "" E(t [l~j)J2)1/2 ;;: L(E, E), 
J=O j=O j (6.15) 

(fH) =1 f Xi(ljIj)I";E(.f [It.i
)12)1!2;;:H(E,E). 

};a+l FQ+I J J (6.16) 

Moreover, our approximation satisfies 

(6.17) 

and hence 

(ha - fO) "" L(E, E) + H(E, E) "" 2M(E, E), (6. 18) 

which is the best possible error bound, but for a factor 
of 2. 

In general, let hN denote the Nthe order truncated ex
panSion (6.11) of the data function h, and let EN and EN 
denote the fit to data, and the global bound of hN 

(6. 19) 

(6.20) 

From (6.9) and (6.10) one can obtain 

(6.21) 

Hence, our method is the best possible but for a factor 
of 2 in this sense also. 

A plot of the (EN' EN)' N = 0, 1,2, ... as the truncation 
order is increased now yields nearly complete infor
mation as to which constraints (E, E) are in the set g 
of permissible pairs. Instead of Fig. 2, we now have 
Fig_ 3; as this diagram illustrates, each point in the set 
28 is above and to the right of at least one point (EN' EN)' 
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) 
J 
CII 

(2E.2E) 

(2£.2E) 

fit to data 

FIG.S. A plot of the (£N.EN)' N=O.1.2.···. 

Method 2'; Take hN as our approximation, where N 
is any integer such that the point (EN' EN) touches the 
shaded area in Fig. 3. The error is then limited by 
(hN - 1°) ~ M(£N + E, EN + E) ~ 3M(£, E). 

Method 3'; If a good upper bound £ for E is known, 
but no good upper bound E for E, then take hNl as our 
approximation, where N' is the first integer such that 
£N' ~ 2£. Then EN' ~ 2E. Thus this approximation has 
the error bound 

which is essentiall.r. best-possible but for a factor of 
three, even though E is unknown. 

Example; Consider Example 3a. The basis 1/10 = 2, 
1/1 1 = C + C1,1/I2 = C2 + C-2," 'is orthogonal with res
pect to both. the Y and Z inner products. Expanding both 
the unknown 10m and the data function h(C) on r = t 
in terms of this baSiS, we have 

co 

10(C) = L; x7(Cj + C-j), 1 ~ I C I ~ R, 
j=O 

(6.23) 

(6.24) 

and the conditions (2.1), (2.2) can be written in terms 
of the coefficients 

IIAJO - hlly = (~ 2(x7- hj )2) 1/2 ~ £, (6.25) 

IiBJO - Oli z = (fJ, (R2J + R"2i)(Xj - 0)2) 1/2 ~ E. 

(6.26) 
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Our approximation by Method I' is the (l th partial ex
pansion 

a 
ham =:L; hi(ei + e-i ), 1 ~ lei ~ R, 

j=O 
(6.27) 

where (l is the largest integer such that 2/ £2 ;;. (R2cx + 
R"2cx)/ E2, Le., Ra "" E/ £. If I in X satisfies IiAIIi y ~ £ 

and IIBlllz ~ E, then we have 

(
1 a ) 1/2 

~ £ - L; (I e Ii + I e I-i) 2 
2 j=O 

~ 
co (I e Ii + Ie I-i) 2) 1/2 

+ E L; 
=a+l (R2j + R"2j) 

(6.28) 

This equals L (£, E) + H (£, E) when e is real, and hence 
is the best-possible stability estimate but for a factor 
of two. 

A. The simultaneous diagonalization (6.1) and (6.2) in 
general 

The simultaneous diagCinalization (6.1) and (6.2) is 
theoretically always possible in general. To begin with, 
we may always assume that X borrows its inner pro
duct from Z by (2.7), thus making B*B the identity. 
Then A*A is self-adjoint and so has a spectral repre
sentation; in Ref. 20 the general case using the spectral 
integral representation is treated. However, in every 
case of interest A *A is also compact; its spectrum is 
discrete and X has an orthonormal basis of eigenfunc
tions 1/10,1/1 1, •.• for A*A with corresponding eigen
values a~ ;;. a¥ ;;. a~ ;;. ... ;;. 0 tending to zero, as de
sired. 

B. Discretization in general of these expansion methods 

We discretize these methods just as in Sec. 6. That is, 
we introduce an "approximate basis" cpo, cp1, ••• , cp" 
spanning the "apprOXimating subspace" X,,+l; we assume 
that 10 and all I of interest actually lie in X,,+l' and we 
then merely proceed with our previous expansion me
thods, but with X replaced by X,,+l' 

The advantage is that calculation of the basis 1/10,1/1 1, ... , 

I/In for X'1+1 which simultaneously diagonalizes the 
quadratic forms A*A and B*B in (6.1) and (6.2) now 
bec.omes merely a matrix eigenvalue problem. Let 
the (n + 1) x (n + 1) matrices (1*(1 and m*m be defined 
and numerically computed just as in Sec. 6. It suffices 
then to find vectors yO, Y 1, .•• , y n in R,,+l such that 

(6.29) 

(<B*my I yi) = b 26 = 6 
, R"+I i Ii Ii 

(with bi == 1 for the sake of normalization); for these 
are then the coefficient vectors of a basis 1/10 = y8cpo + 
y~cp1 + ... + y~cpn,1/I1 = YOcpo + ylcpl + '" + Y,}CP" 
satisfying (6.1) and (6.2) as desired. This simultaneous 
diagonalization of two quadratic forms, with the second 
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positive definite, is a well-known matrix computation. 
In this first place, one may use the Gram-Schmidt ortho
gonalization to exchange the original basis for one which 
is orthonormal with respect to the Z inner product. To 
avoid a bit of notational complexity, let us assume that 
this has been done in advance and that rpo, rpl, ••. , rprJ 
is already orthonormal; ffi*ffi is thus the identity ma
trix. Secondly, one must then compute the eigenvalues 
a~ '" a~ '" ... '" a~ '" 0 and corresponding orthonormal 
eigenvectors y ° ,Y 1, ... , yn of a*a, (6.29) will then be 
satisfied as desired. 

C. Exact discretization using reproducing kernels 

When Y has finite dimension k and 1I/11x == IIBlllz' as in 
Sec. 5, recall that X decomposes into the two subspaces 
.cJ. == {I EX: AI == o} and its orthogonal complement.c. 
Notice, however, that this is exactly the orthogonal de
composition of X which occurs when one divides the 
orthonormal basis of eigenvectors 1/10,1/11,'" into those 
1/1 0, 1/1 1, ... ,1/1 1'-l(r == dim range (A) .. k) for which a~ '" 
... '" a~_1 '" 0 and those 1/1",1/1 nl, ... for which a~ == 
a~+1 = ... = O. That is span {1/IT,1/IT+1,1/Ir+2, •.. } is 
clearly equal.cJ. and hence its orthogonal complement 
span {1/Io, 1/11, '" ,1/I1'-l} must equal (.cJ.)J. =.c, which 
then equals span (u 1, ... , U.}. 

It is then easy to see that if we perform the discretized 
version 6B of our expansion methods using u1 , •• • u· as 
our" approximate basis," then the eigenfunctions 1/1 0, ••• , 

1/11'-1, the eigenvalues a~ ", ... '" a~_l '" 0, the partial 
expansions hN' N = 0, 1, ... , the fits to data, and the 
global bounds (£ N' EN) obtained are exactly what would 
have been obtained with no discretization at all. Simi
larly, if we perform the discretized version of our ex
pansion methods using u 1, ••• , u. and VI, •.• , vP, as our 
"approximate basis," then the stability estimates M(£, E), 
L(£, E), and H(£, E) for the discretized problem are also 
exactly what would have occurred with no discretization 
at all. 

D. Inflexibility of polynomial expansions 

The classical theory (Walsh27) of orthogonal polynomial 
expansions, with data given on a fairly arbitrary data 
set r and with respect to a fairly arbitrary positive 
weight function {3 on r, establishes convergence proper
ties for such expansions which are closely analogous 
to the well-known convergence properties (on circles) of 
the Taylor series expansion. According to this theory, 
the shape of the regions of convergence is completely 
and rigidly determined by the shape of r. We men
tioned a special case in Example 4a, where r = [- 1, + 1] 
and the regions of convergence are confocal ellipses. 
This difficulty can be circumvented by conformal mapp
ing of the original region of holomorphy of the physical 
problem into one of these regions of convergence, as 
pointed out by Cutkosky-Deol7 and Ciulli. 15 

However, there is then the further difficulty that, given 
the weight function {3 on r, the orthogonal polynomials 
are then uniquely determined and, in general, these will 
not be orthogonal with respect to any natural norm on 
00. 

The method of partial eigenfunction expansions is in
stead much more flexible. One is free to choose na
tural inner product norms independently on both rand 
00. Then, instead of expanding the data in polynomials, 
we expand them in eigenfunctions of the operator A*A 
(see also Cutkosky19 at this point). 
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7. CONCLUSIONS 

Various portions of the least-squares, partial expan
Sions, reproducing kernel techniques of the preceding 
sections have been discovered independently by several 
different authors. The methods of Backus22-25 are 
essentially equivalent to the least- squares Method 1, 
combined always with the reproducing kernel discre
tization. He gives a probabilistic interpretation to the 
data accuracy (2.1), the 'prescribed bound (2.2), and 
the error bound (4.8). 

The partial eigenfunction expansion Method l' (with 
exactly th~ same choice of truncation order) occurs in 
Cutkosky.19 Cutkosky 19 also uses the reproducing ker
nel technique. This corresponds to a "minimal decom
position" of the operator A in his terminology. How
ever, much of the complication of his paper can pro
bably be attributed to the fact that he seeks explicit 
integral formulas for the kernel functions, rather than 
the more simple device of Sec. 5A. 

The approach of Cutkosky19 as to choice of truncation 
point when the" scale factor" E is unknown seems to 
differ from that of Method 3'. Cutkosky assumes that 
the coefficients of (AI - h) are independent Gaussian 
random variables. He also assumes that I is a Gaussian 
random variable in the Hilbert space X. From these 
assumptions he derives a series truncation order N 
(and also error estimatea for <I - hN») using a statis
tical test involving ratios of the computed Fourier co
efficients. 

This Gaussian hypothesis may be too restrictive for 
some of the problems mentioned in Sec. 2. There is 
some reason to believe that the ratio test of Cutkosky 
would lead to a choice of truncation pOint similar to 
that of Method 3' if the coefficients of I truly have a 
Gaussian type distribution. However, it is unclear to 
us what effect departures from Gaussian behavior will 
have in this ratio test. Can this ratio test lead to trun
cation point N with EN much larger than EN'? If so, we 
fear for the stability of the process. 

The authors prefer to take a much more conservative 
and peSSimistic point of view. Ultimately, it seems to 
us , that any knowledge of the value E of the global bound (in 
order to have error bounds) must come from a priori 
sources, that is, sources completely outside anything' 
which can be discerned from the data itself. The data 
h can only disclose that E below a certain value E A' = 
E( E) (given by Method 3) is impossible. For the purpose 
of computing error estimates one may then wish to 
make the assumption that E ~ E(e); however, there is no 
reliable baSis for this assumption. On the other hand, 
there always remains the possibility that fits to data of 
greater accuracy would reveal greater oscillation and 
pathology in I. 
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Perturbation solution of the Kirkwood-Salsburg 
equation* 
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A formal series solution to the Kirkwood-Salsburg equation and its radius of convergence are 
derived. This solution leads naturally to the establishment of an approximate hierarchy of equations 
for the distribution functions which needs no closure. The asymptotic behavior of the solutions to 
this approximate hierarchy is studied as well as the behavior of the derivatives of the pair function 
with respect to the interparticle distance. 

I. INTRODUCTION 

In order to facilitate the study of the N particle distribu
tion functions, many hierarchies of equations have been 
developed which admit the set of distribution functions 
as a solution. These equations have been studied from 
various points of view. For pairwise additive potentials 
the Kirkwood-Salsburg1 equations have yielded both 
approximate numerical information2 and rigorous 
results. 

Ruelle3a, b has made progress by formulating the 
Kirkwood-Salsburg as an operator equation in a Banach 
space. Iterating the equation generates a power series 
in the activity z, which Ruelle proved converged in a 
region of the complex z plane centered about z = O. 

The purpose of this paper is to present an alternate 
solution to the Kirkwood-Salsburg (K-S) equation which 
shows some promise of having a larger radius of con
vergence and of yielding some information about pro
perties of the distribution functions such as their asym
ptotic behavior. 

We also consider the K-S equation as an operator equa
tion in a Banach space. By making some modifications 
to the equation and separating the operator into an un
perturbed part and a perturbation, we obtain a series 
solution to the equation. This method of solution, which 
for positive potentials generates a resummation of the 
activity series of Ruelle, leads naturally to the establish
ment of an approximate hierarchy which is identical to 
the first coverinr; sphere approximation of Sabry2. The 
solution for P NA(i,xNt) of the approximate hierarchy is 
shown to be the first nonzero contribution to P N({XN}) ' 
the solution to the exact hierarchy, generated by the per
turbation expansion. 

Various properties of the approximate hierarchy are 
stUdied. We also argue that certain of these properties 
studied are identical in the solution of both approximate 
and exact hierarchies. 

II. INTRODUCTION OF THE BANACH SPACE 
APPROACH 

The N particle distribution functions are defined in the 
grand canonical ensemble as 

(3 = l/KT, A = h/(21TmKT) 1/2 • 

Am is the m particle configuration space. PN({XN}) can be 

1049 J. Math. Phys., Vol. 14, No.8, August 1973 

shown, for pairwise additive potentials, to be a solution 
of the K-S equation 

(II. 1) 

CP(X; - Xj) = two particle potential. 

We reqUire, with Ruelle,3b three properties of the inter
action potential. 

(1) The N particle potential 

UN(x1"'XN) =6 cp(lxi -x.1) ~ -NB, 
i#j J 

where B is a positive constant. 

(2) 

J Ifij I fix;j = C{(3) < 00. 

(3) 

where A is a positive constant. 

The K-S equation can be considered as an operator 
equation in a Banach space 4 composed of the vectors 

f= 

The fi({x j }) are bounded measurable functions and S is 
an arbitrary positive constant. The K-S operator is 
defined by its effect on an arbitrary vector in the 
Banach space 

Copyright © 1973 by the American Institute of Physics 1049 
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(j;~J ) 
zKj=. , 

jN'({XN}) 

(11.2) 

Employing definition (11.2), we can write (11.1) as 

p = z + zKp, (11.3) 

where 

is the vector of N particle distribution functions. 

From their definition we usually understand that the N 
particle distribution functions are invariant under the 
interchange of particles. Arbitrary vectors in the 
Banach space, however, need not have this property. 
Consequently, the Kirkwood-Salsburg operator must be 
specified with more care. The first term in each of the 
sums of the right-hand side of Eq. (II. 2) is of the form 

These terms can be considered as operators which, in 
addition to the integration with a kernel 11 N+ 1> replace 
particle 1 by particle N + 1. They will be written as 

Terms with kernels which are constructed from pro
ducts of two or more lij will be considered as operators 
which replace particle i with i + 1: 

Due to the symmetry of the distribution functions under 
particle interchange they will be a solution of Eq. (11.3) 
with the above modifications. 

K is clearly a linear operator. By generally following 
Ruelle, a bound for the norm of zK can be obtained as 
follows 

00 1 
+~ - sup 

n=l n! V{x } 
N+n-l 

1/"'(xl" .xN)1 I I 28BNII/II [C(.B)S] sup N "" Z e exp • 
V{x} S S 

N 

J. Math. Phys., Vol. 14, No.8, August 1973 

"" exp[- 2f3UN~1" .XN)] 

~ exp(2{3BN). (11.4) 

For positive potentials B = 0 and zK is bounded. If the 
potential has an attractive part, Eq. (11.4) becomes 
infinite as N -7 CQ. 

For B ;0' 0 the operator cannot be bounded in this manner. 
Ruelle 5 avoided this difficulty by defining a permutation 
operator rr which permutes particle 1 with that particle 
which makes 

N n (1 + Ii}) < e28B • 
jtt 

By virtue of their symmetry under particle interchange 
the distribution functions will also satisfy. 

p = z + zrrKp. 

In addition to the disadvantages of the series expansion 
mentioned in Sec. I, the permutation operator employed 
by Ruelle complicates the equation in such a way that 
its utility for numerical computation is greatly reduced. 

We avoid the divergence of Eq. (11.4) by limiting the 
class of potentials considered to those which satisfy 

<p(ixi)=CQ, Ixl<a, 

<p(lxl) = 0, lxl < a, a> a. 

This class, of course, includes repulsive potentials. 

We take advantage of this restriction by multiplying the 
Kirkwood-Salsburg operator by a projection operator 

where 

o 
1 
o 
o 

P N = 1 for I Xi - Xj I > a, 

Vijj E {xN}, i;o' j, 

P N = 0 if I Xi - Xj 1< (J 

for some i andj E{XN}, i;o' j. 

... ) ... 

. . . ' 

Since the distribution functions are symmetric under 
particle interchange, they will also be solutions of 

p = z + zPKp 

with these modifications 

PN ~ (1 + 11j ) = P N expL f3 ~ <P(xl - Xj»)"" e2 f3B'. 
J=2 , j=2 

(II. 5) 
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The role of P N is to insure that in a finite region of 
space there can be only a finite number of particles. 
The finite range of the potentials considered limits the 
volume within which a particle can have a nonzero inter
action with particle 1. Therefore the sum 

N 

L) ¢(x1 -Xj) 
j=2 

in the exponential of (II. 5) will truncate at a finite N = No 
and will be finite. 

The modified K-S operator has a norm bounded by 

II zlKn .,; e 2f3B' lexp[C(f3)S)/S. 

The value of B' depends on the details of the potential. 
The relationship between B' and the B of Ruelle is also 
potential dependent. It is clear, however, that 

B' ~B 

and that, for potentials for which the lower bound for 
the energy per particle is achieved in the close packed 
configuration, 

B' =B. 

III. PERTURBATION SERIES SOLUTION 

The K-S operator (II. 2) can be written as the sum of 
two operators. Including the projection operator P, we 
define 

zPK' 

zPKo =zP 

, 00 1 J n 
f 1(X1) =L) "I fn(x2 •• ·~+1).r1 f 1jdxj , 

n=ln. J=2 

f'N(x1" .xN ) 

1" = zPKf = zlKof + zPK' f. 

The contribution to f'~(xN) from zlK' f is 
N 

zPNn (1 + f 1j )fN - 1 (x2" .xN). 
J=l 

(III. 1) 

(III. 2) 

OutSide of a finite range, small in comparison to the re
mainder of configuration space, 

N 
r1 (1 + f 1j ) = 1. 
j=2 

J. Math. Phys., Vol. 14, No.8, August 1973 

In additionfN_1(x2., .XN) is only defined over a subspace 
of the N particle configuration space. These considera
tions suggest that the contribution of (III. 2) to f Nil (xN) is 
small compared to the contribution of zPK of and that 
zPK' might be treated as a perturbation. 

Multiplying zPK' by an arbitrary perturbation parameter 
€ gives 

p = z + zPKof + €ZPK'f. (III. 3) 

We assume that p can be expanded in a power series in 
E, 

p =2; €n¢ •• 
.=0 

(m.4) 

Inserting (III. 4) in (III. 3) and equating powers of € gives 
the recursion relation 

<1>0 = z + zPKo¢o' 

<l>N=zPK'¢N-1 +zPKO¢N' 
(III. 5) 

Equation (1lI. 4) will be a solution of the K-S equation if 
each of the equations of (III. 5) has a solution and the 
expansion (III. 4) is uniformly convergent for € .,; I, 

Satisfaction of the first condition can be guaranteed6 if 

II zPKoli < 1. 

Since 

II zPKolI.,; Izll~ plIlIKo II 

.,; IzllIKoli 

and IIKoll can be bound by the same procedure outlined 
in Sect. II to bound the entire Kirkwood-Salsburg 
operator, 

IIzlKol!.,; Izle IlB1 {exp[C(f3)S] -1}/S. (m.6) 

Choosing 

S = C(f3r 1, 

II zPKoll .,; Iz I e llB1 (e -1)C(f3). 

Restricting z so that 

(III. 7) 

we find that each of the equations of (III. 5) has a unique 
solution. From (m.5) 

<1>0 = (1- zPKor1z, 

cf>N = [(1 - zPKo) 1 ZPK']Ncf>O' 

The second condition will be satisfied6 if 

II (1 - zPKo) 1 z PK'il < 1. 

We assume z satisfies (Ill. 7). Expanding and taking the 
norm of both Sides, we have 

.,; 1/(1 -llzPKolI). 
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Therefore, 

11(1 - zlKo>-lII ~ 1/[1- I z I e M1 (e - l)C (.B)]. 

IIzPK'1l can be bounded by noting that if for an arbitrary 
vector cP 

then 

Therefore, 

IIzPK'1l ~ IzleBB'IS = Izle BB'C(,8). 

Since 

IIABII ~ IIAII IIBII, 

for the second condition to be satisfied, 

or 

which is consistent with (III. 7). 

Therefore the only solution to the K-S equation for 

I z I< (e (8B'+ 1)~ (,8»-1 

can be written as 

P =I; r(l-zPKo)-l ZPK'JN (l-zPKo)-lz • 
N=oL 

IV. THE STRIP OPERATOR APPROXIMATION 

The perturbation series solution defined in the pre
vious section leads very naturally to the definition of 
an approximate hierarchy. The components of the 
solution vector of this hierarchy are the first nonzero 
perturbation corrections to the corresponding distribu
tion functions. 

To derive this approximate hierarchy, one must note that 
for the range of z we are considering 

Izl<~xp(,8B' + l)C(,8)]-l 

operators of the form 

zPN fii (1 + !lj) J pJxN+1 x2 •• ,XN)!l N+1tixN+1 
j=2 " 

have a norm less than 1. 

This coupled with Eq. (III. 6) allows us to construct the 
solution to 

CPo = z + zPKoCPo 

J. Math. Phys •• Vol. 14, No.8, August 1973 

by requiring that all components of CPo except the first 
are 0; and the first component satisfies 

(IV. 1) 

The same procedure can be used to solve 

We demand that all components of the solution vector 
except the first two be zero and that they satisfy 

Pl s1(x1) = z J Pl sl(x2)!l2dx2 

+ z J P2s(x2,x3)!izf13dx2dx3' 

P2s(xV X2) = z(l + !12) (P1,s (x2) + Jp2S(x3,X2)!l3dx3)' 

(IV. 2) 
This procedure can be continued to all orders of the 
perturbation expansion. 

Two points can be made about the above 'solution' to the 
K-S hierarchy. First: Pls and P2s could have been 
obtained by simply solving the pair of equations 

P1s(xl) = z + z J Pl s(x2)!12dx2' 

Pzs(x1' x 2) = z (1 + !l2)~lS (x2) + J P2s(x3' X 2)!l3dx3)' 

If in fact the procedure of (IV. 1) and (IV. 2) is continued, 
it is clear that the first nonzero contribution from the 
perturbation expansion to any of the distribution func
tions can be obtained by solving the approximate 
hierarchy: 

P1s(x1) = z + z J P1s(x2)f12dx2, 

PNS(xl" .xN ) =Z ~ (1 + !lj)P/P<N-l)s(x2" .xN) (IV. 3) 
J=2 \' 

+ J PNS(xN+l'X2" .XN)!l,N+ldxN+l)' 

We call this approximation the strip operator hierarchy, 
It is identical to the first covering sphere approxima
tion of Sabry. 2 

The second point we wish to make can be illustrated by 
solving Eqs. (IV. 1) and (IV.2). The solution of Eq. (IV. 2) 
is obtained by solving 

P2S(xl>X2) = z (1 + !12)01S(x2) + J P2S(x3,X2)!13dx3)' 

(IV. 4) 

P1,s/~l) = z J P2s(x2' X 3)!l2!l3dx2dx3 + z .r PlSl (x2)f12dx2 , 

(IV. 5) 
and solving. Equation (IV. 5), which gives the second 
order peturbation expansion contribution to the single 
particle distribution function, is quite similar to Eq. 
(IV. 1) which gives the first order contribution. They 
are similar in that (IV. 1) and (IV. 5) are integral 
equations of the same form with identical kernels but 
different inhomogeneous terms. 

In general any contribution to the Nth distribution func
tion is obtained by solving an equation of a form identi
cal to the Nth equation in (IV. 3) except for the inhomo
geneous term. 
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The significance of this lies in the fact that certain 
properties of the solution of an integral equation depend 
entirely on the kernel and others are strongly influenced 
by it. Consequently, each term in the perturbation ex
pansion for p J.x1' .. xN) will have particular properties 
in common with contributions to p J.xl ... xN) of all 
orders and therefore with p N(x1' •• X N } 

In the remaining sections of this paper we will investi
gate some of the properties of the solutions to the strip 
operator hierarchy. In this way we will obtain informa
tion about the integral equations whose solutions generate 
the distribution functions. 

V. PRODUCT PROPERTY 
The first property of the solutions to the strip operator 
(S-O) hierarchy that we will investigate is its behaviour 
when clusters of particles are separated by large 
distances. 

The question is complicated by the fact that the three 
particle, and higher, S-O distribution functions are not 
symmetric under interchange of particles. An outline 
of a proof of this statement follows. 

We have 

(V. 1) 

where Psis the vector of solutions to the S-O hierarchy 
and K s is the strip operator. By a method identical to 
that employed in Sec. II 

IlzPKs11 < 1 

for 
Iz 1< (exp[(3B' + l]C«(3»-l. 

This guarantees that (V. 1) has a unique solution which 
can be written as 

Performing the indicated operations generates 7 a power 
series in z for each distribution function. It can be seen 
by inspection that the fourth iteration generates a term 
for P3s (x1'x2 ,X3) which is not symmetric under particle 
interchange. By virtue of the independence of the terms 
in the generated power series P3s(x1,x2 ,X3) is not sym
metric under particle interchange. Further iterations 
indicate the same for P 4 s (Xl> X2 , X3, x 4 ) and higher order 
functions. 

This complication forces us to be more precise in the 
definition of 

P Ns (Xi l' .. X iN) is defined as the solution of Eq. (IV. 3) with 
the variable dependence altered by the permutation 
operator 

i1···i N 
11 

1,2, ••. N. 

We are now in a position to prove the following. 

Theorem: For 

Izl< [exp«(3B' + l)C«(3)]-l, 

J. Math. Phys., Vol. 14, No.8, August 1973 

(V. 2) 

whenever 

min IXi - x6 1 =R ~CO, 
Vi E {xsl 
V 6 E {x q,l 

where 

Proof: It is always assumed that particle 1 is in 
{xs}. The proof proceeds by induction. 

The function P1 (xl) is a constant for the range of z 
considered and therefore trivially has the required 
behaviour which is called the product property. For an 
arbitrary N 

N 
lim ({xs} EB {xJ) = z lim P N lim n (1 + f 1j) 
R-+OO R-+OO R-+OO j=2 

®(lim PN-1(x2",xN) 
R->OO 

+ lim 
R-+~ 

P N(x1' •. xN ) is a bounded function and ® is meant to Signify 
simple multiplication. Therefore the integral 

J PN(xN+V X2" .xN)f1,N+1dxN+1 

is uniformly convergent. Assuming that P N-1 (x2 • •• xN) 

has the product property (V. 2), we have 

lim P N({XS} EB {xq,}) = zP sP q,+1 Ii (1 + f 1j) 
R-+ 00 j E{x s -ll 

® (Pq,{XJP s-1{XS- 1} 

+ J lim pJ-XN+V X2 " .XN )f1,N+1dxN+1) 
R->OO 

(V. 3) 

where {XS - 1} refers to the set {xs} with particle 1 
removed and P </>+1 will be zero if any of the pafticles 
{xJ are closer together than a hard core diameter. 

(V. 3) can be rewritten as 

(I - e) lim PN(x1'" xN) 
R->OO 

s 
= zPs Pq,+l Il (1 + f 1j)pq,({XJ)PS-1({XS-1}) 

jE{x -ll 
S 

where 
s 

elJ;(x1" .xN) =zPs P</>+l Il (1 + f 1j) 
jE{x s-l) 

f f 1,N+1lJ;(xN+1,x2 " .xN)dxN+1• 

In the range of z considered 

Ilell < 1 

so that 

lim P N(x1' •• xN) 
R->OO 

But 

= zPSP</> + 1Pq,{XJP s-1{Xs - 1} (1 - e)-l Ii (1 + {lj)' 
jE{x s-l) 
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and 

PIj>+lPIj>{XJ = PIj>{xJ. 

Therefore 

lim PN(;xl" .xN) =PIj>{xJps{xs}' 
R .... OO 

VI. LONG RANGE BEHAVIOR OF 8-0 DISTRIBUTION 
FUNCTIONS 

Having determined that the solutions to the S-O hier
archy have the product property, we are in a position to 
investigate the long range behavior of the distribution 
functions. To be more precise, we know that, in the 
limit as R ~ aJ, 

lim 
R .... OO 

lim 
R .... OO 

PN({Xs } $ {xJ) ~ Ps{xs}PIj>{xJ + C N({XJ), 

CN({xJ) ~O, 

and we are interested in the form of C N({XJ). 

We will prove the following. 

Ihevrem: For 

Iz 1 < (exp(.BB' + 1)C(.B»-1 

Kao is the root with the smalles positive imaginary 
part of 

A 

1 - z! (K, (3), 

j (K, (3) = r e-tK' x! (x)dx == f<K). 

A ao is a number dependent upon Kao but not R. 

The proof proceeds by induction. Since P1 (xl) plays no 
part in the analysis we start by proving P2(X1' x2) has 
the required property. 

In the relevant range for 1 z 1 the distripution functions 
depend on the distances between particles. Consequently 

A 

P1 (;xl) = z /[1 - z! (0» = p. 

Dividing both sides of 

P2(XV X2) = z(l + !12)0 + J P2(x3,X2)!13dx3) 

by (1 +f12 ), w~ obtain 

P2'(X1,x2) = z(p + .r P2(X3,X2)!13dx3)' 

(VI. 1) 

(VI. 2) 

Since we have restricted the allowable potentials to 
finite range interactions, we can define 

where 

P2I(xl' x2 ) = P2I'(xl , x2 ) = 0, 

P20(X1, x2) = P20' (Xl' x2) = 0, 

J. Math. Phys., Vol. 14, No.8, J.\ugust 1973 

(VI. 3) 

IXl -x2 1:;. a, 

1 Xl -X21 < a. 

Clearly 

P20(Xl'x2) =P20' (;xl'X2)· 

Substituting (VI. 3) into (VI. 2), taking the Fourier trans
form with respect to Xl' and employing the convolution 
theorem, we obtain 

A (K) zpO(K) P2/ (K) P2I (K)zf(K) 
P20 = A - A + A 

1 - z!(K) 1 - z!(K) 1 - z! (K) 

Writing 
A A A 

l/[l-z!(K)] = 1 + z!(K)/[l-z!(K)] 

and taking the inverse Fourier transform, we have 

P20(XV X2) = ZP x(O) 
1-z! 

- P2I' (;xl' x2) + J G(x3' x2)F(Xl - x3)dx3, 

G(X3,x2) = P21(;x3'X2) - P2I' (X3,X2), 

eiK,¢cl-XS)zf(K) 
F(x i - X3) = .r x d(K) 

1 -z! (K) 

(VI. 4) 

. JetK,(xI-x~z(1(K»2 
= zJ (;xl - x3) + A d(K) 

1-z! (K) 

(VI. 5) 

Taking the limit as 1 Xl2 1 ~ aJ of (VI. 4) and inverting the 
order of limit and integrationS gives 

lim P2o(lxI2 1) = ZP x 
'Xl2' .... oo 1 - z!(O) 

+ J G(IX23 i> lim !(IXI2 -X23 1)dx23 
, x12' .... 00 

(VI. 6) 

where the dependence of P20' G,f, and F' on only the dis
tance between particles has been made explicit. 

If the required integral in (VI. 5) is performed in the 
complex K plane on a semi-circular contour closed in 
the upper half-plane,S then 

iKa 'X 12 -X23 , 

lim F'(lx12 - x23 1) = E Aa lim ell' 
'X12' .... 00 a 'X12' .... 00 Xl2 -X23 

A tK 1 - I K a are the roots of 1 - z! (K) and A ae a X12 X 23 is the 
residue at K a' 

Returning to (VI.6), G(IX231) demands that 

IX23 1 < a 

so that 

lim ( 1 x12 - x2 31 ) -> I X12 1 , 
, X12' .... 00 

lim !(lx12 -X231) = O. 
'X12' .... "" 

Therefore 

lim P2 (IX12 1) = zp A 

'X12' .... "" 0 1-z!(0) 

+ ~ A no (I G(ix23 I )dx23 
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K"o are those roots of 
A 

1 - zf{K) 

with the smallest positive imaginary parts. Since 
A 

P = z/[1 - zf(O)], 

P2 (xl,x2 ) has the required property. 
s 

Assuming that P (N-l) (xl' •• XN- 1) also has the required 
property, we investig'hte the solution of 

N 

PN (xl"'XN) =zPNn (1 +!lj) 
S j=2 

x ~(N-I)s (x2" .xN) + I PNs (xN+l'" xN)f 1,N+l dxN+ 1). 

(VI. 7) 

Before proceeding it will be useful to modify VI. 7 
slightly. We define 

PN (xl" .XN) 
pes (xl' •. XN) = s (VI. 8) 

P (N-l>S (x2' •• x N) 

and divide particles 1 to N into the clusters 

{1,a,a+1, ... ,N}, {2,3, ... ,a}. 

(The generality of the argument is not affected by this 
arbitrary choice.) When the two clusters are separated 
by an infinite distance we know from the previous 
section that 

P(a-l) (x2" ,Xa)P(N-a+l) (xl>Xa +l" .xN) 
P(x ) s s 

P N l' .. XN ~ ( ) ( ) 
s P(a-l)s X2 •• .Xa P(N-a)s Xa+l" 'XN 

= pP(N-a+l)s (xl>Xa + l' •• x N)· 

We can now define a function C N(xl' •• x N) by 

a p ) pC (Xl' .. XN) = P N n (1 +ftj) P (N-a+l) (XlXa +l • .. XN s j=2 s 

+ C N(xl" • x N)· (VI. 9) 

Clearly if R is the minimum distance between the two 
clusters 

lim C N(xl' •• x N) ~ O. 
R-oo 

From (VI. 7), (VI. 8), and (VI. 9), 
a 

CN(xl" .xN) +PNpP(N-a+l) (xl>Xa +l " .xN) n (1 + I lj ) 
s j=2 

=zPNfI (1 + f lj) (1 + ICN(xN+l",XN)/l,N+ldxN+l 
j=2 

+ In (1 +hN+l) 
j=2 

X P~N-a+l)s (xN+l' xa+l' •• XN)/I,N+ldxN+l). 

Since 
p N 

PNP(N-a+l) (xl'Xa+l"'XN) =zPNn (1 +/lj ) 
s j=a+l 

X (1 + I P{;v-a+l)s (XNt-l'Xa +l " .xN)fl,N+ldxN+I)' 

We have 

CN(xI' •• x N) = zPN fI (1 + A},) I CN(xN+l' •• xN)/l N+ldxN+1 
j=2 ' 
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+ zPN fI (1 + I lj ) I(~ (1 +!N+l,j) -1) 
j=2 J=2 

X P~-a+l)s (xN+l' xa' •. xN)fl,N+ ldxN+l' 

which is of the form 

C = a +KC. 

(VI. 10) 

The correspondence between the linear operator K, the 
unknown vector C, and the known inhomogeneous vector 
a and their counterparts in (VI. 10) is obvious. 

The K operator can be written as the sum of two 
operators 

a 
K olJl = zPN n (1 + I lj ) 

j=2 

X J lJIN(xN+l" • xN)/l,N+ IdxN+ 1 

The term (nf=a+l (1 + Ilj)-l)actstorestricttherange 

of K' so that its effect is small in comparison to that of 
K o. We can, therefore, treat K' as a perturbation, 

C = a +KoC + dC'C. 

With a procedure identical to that of Sec. III we find that 
for the indicated range of I z I 

C = E EncJ>n' 
n=O 

cJ>o = a +KocJ>o, (VI. 12) 

cJ>N =K'cJ>N-l +Ko cJ>N' 

which is uniformly convergent for E ~ 1 as long as 

IIK'/(l-Ko)lI< 1. (VI. 13) 

After performing the required manipulations, we find 
(VI. 13) to be valid as long as 

I z I < (2 exp({3B') C ({3»-1 > (exp({3B' + 1) C ({3»-1. 

Since (VI. 12) is uniformly convergent, we can investigate 
the limit of C N (xl • , • XN) as R ~ ex) by taking the limit of 
each term of {VI. 12) and summing the limits,9 In this 
spirit we state the following. 

Theorem: For Iz 1< [exp({3B' + 1)C ({3)]-1, 

A ~N) depends on K a and the interparticle distances of o 0 
particles within the same cluster, but not on R. 

Again the proof proceeds by induction: 

cJ>o(xl ,· ,XN) 

= zPN n (1 + I lj ) J cJ>O(XN+l' , ,XN)/I N+ldxN+1 
j=2 ' 

+ zPN j~2 (1 + I lj ) .rC~2 (1 + IN+I,j) -1) 
x P~-a+l (xN+l> xa+l' , • x N) 0/l ,N+1 dxN+l , (VI. 14) 
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Dividing by nr=2(1+ f lj ) and noting that 410(Xl" .xN ) = 0 

when flj.2 (1 + flj) = 0, we can write 

, 41o(xl •• . x N) 
41 o(xl • •• x N) = -=a,-:...--.::.----.:.:. 

n (1 +fl ·) 
j=2 1 

(VI. 15) 

By means of the following equations we can also define 
four functions 410(0),410 (1),41' 0 (0),41' 0 (1): 

41'O(Xl'''XN) = 41'O(O)(Xl,,,XN) + 41'O(I){Xl'''xN), 

(VI. 16) 

if particle 1 is not within the ~tential range of at least 
one of the particles {2, 3, ... , a}, 

410 (O)(xl , •• x N) = 41'o(xl " .xN) = 0, 

if particle 1 is within the potential range of one of the 
particles {2, 3, ... , a}, and 

DeSignating the inhomogeneous term in (VI. 14) by a 
employing definitions (VI. 15) and (VI. 16) and taking the 
Fourier transform of both sides with respect to Xl 
gives 

azPNf (K) A A, 

41o(0)fK,x2 ••• x N) = x + a - 41o(I)(K,x2 •· .xN) 
1 - zPNf(K) 

In this development x2 ••• xN are variables, the value of 
which can be adjusted at will. Since it is clear that the 
solutions to the S-O equations are identically zero if 
any of the above set are closer together than a hard 
core diameter, we will exclude this possibility from con
sideration and set P N equal to 1. There is no loss of 
generality in the argument. 

Employing the identity 

zf(K)/[l - zf(K)] =zf(K) + z2(f(K))2/[1 - zf(K)], 

taking the inverse Fourier transform and the limit as 
R -) cos, we have 

B eiKalxllI1 

lim 410 (O)(xl .•• x N) = I lim L; a I I 
R"'oo R-+OO a XlII 

rAJ 

X[ZPNfI (1 +fllj)~(n (1 +fN+l ,j)-l) 
j=a+l j=2 

xp N-a+l (XN+ l' Xa+1' •• xN)IN+ 1,11 

B~iK a IXIIII 

12) dxN +1dxll + .r lim 'B I I 
R ... oo a XlII 

X( 410 (I)(X II,X2 , •. XN)- 41' o (I)(xIl'X2 , • 'XN~dxll' 
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(VI. 17) 

We have made use of 

lim a = 0, 
R"'oo 

lim I f 1 ,IIZPN fI (1 +fll j ) fI( n (I + fN+ 1 .) - 1) 
R-+OO j=a+l j=2 ,] 

12) P~-a+l(xN"'l,Xa+l" ,xN)fN+l,lItixN+ltixll = 0, 

i~~ I fl'lI (410 (I)(xll' x 2 • •• XN) - 41' 0(1)(xIl'X2 ' •• x N» 

12) dxll = O. 

In the limit as R -) co of term rAJ of (VI. 17) 

IXh I -)R. 

This is a consequence of the restrictions 

f - 0 . N+l,1I -

unless II is within the potential range of N + 1, and 

a 
n (1 + f N+ 1 j) - 1 = 0 

j=2 ' 

unless N + 1 is within the potential range of at least one 
of the particles of the cluster {2 ... a}. Therefore'far
ticle II is a finite distance from the cluster {2 ... a and 
hence a distance apprOximately equal to R from par
ticle 1, for large R , 

Term ® becomes 
iK"'oR N 

lim L;Ba _e __ I ZPN n (1 + fll) 
R"'oo "'0 0 R j=a+l 

XI(n2{1 +fN +l )-l) 

12) P PN-a""a+l" .xN)fN+1 ,lItixN+l,tixJj 

plus terms which damp faster than eiKeta
R

/ R • 

(VI. IS) 

Since [410 (I){x lI , x 2 • •• x N) - 41'0(I){XJj,X2" .xN)] 
restricts particle II to the potential range of at least 
one of the particles in the set {2. , , a}, term B becomes 

iKOR 
lim L; Ba _e_ 
R-+oo ao 0 R 

xI!~ [410(I)(xJj,x2 ., .xN) - 41'0(1)(X II 'X2 " ,xN)Jtixll 

plus terms which damp faster than eiKoR/R. 

Consequently, 
iK R 

( ) "I' A(O)~ lim 410 xl" 'XN -) LJ 1m 
R"'oo eta R-+oo eta R 

A (0) is a function of a 0 and distances between particles 
w~hin the same cluster, but not R. 

Assuming that 41 (N-l )""1' , • xN) has the required pro
perty, we investigate the large R limit of 

41N(xl,,,XN) =zPNn (1 +flj ) 
j=2 

xI 41N(xN+l" .xNlfl ,N+ldxN+l 
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+ P N n (1 +! lj) (11 (1 + f Ii) - 1\ 
jdJ. j=a+l J 

xI ¢N-l(XN+ l " . x N)f1 ,N+ ldxN + l' 

With a procedure identical to that used for (VI. 14), we 
find 

• "". (ff) e iK Cto R 
11m ¢N(xl" .XN) --'>L..J 11m A K ---
R .... oo Cto R .... oo "0 R 

iK RI plus terms that damp faster than e <>0 R: 

A<;) =Ilim[¢N(I)(XN + l ,X2 ",XN) 
"0 R .... oo 

- ¢'N(I)(XN +l ,X2 " ,xN)dxu 

+JC~a+l (1 +!u,j)-1)F(lxl - X ul) 

r (ff-l)! .J- ..... 
X. AKa u,N+lUAN+luAu· 

o 

As previously noted, the perturbation technique produces 
a uniformly convergent series. 

Therefore, 
iK R 

lim CN(xl" .xN) --'> 6A::') lim ~ 
R-+oo N "0 R .... oo R 

(VI. 19) 

Equations (VI. 19), (VI. 8), and (VI. 9) and the assumption 
that P (lrl) (Xl'" Xlrl) has the requisite property com
bine to pr&duce the result 

VII. PROPERTIES OF DERIVATIVES 

In this section we investigate the properties of the 
derivatives of the S-O distribution function as a function 
of the interparticle distance R. 

We restrict our considerations to hard sphere potentials, 
i.e., 

q,(x) = 00, X < a, 

¢(x) = 0, X ~ a. 

StillingerlO has argued that the pair distribution func
tion, in the fluid phase, is Coo in no interval on the real 
line. For the S-O pair function will prove that neither 

P2 s(X12) = Z (1 + !12)0 + J P2 s (x23)! 13dx3) (VIT.l) 

or 

P' 2s (X12) = Z [p + J P2 s (X23)!13dx3] (VIT.2) 

are Coo at integral multiples of the hard sphere dia
meter a. 

In what follows we will make use of the theory of gen
eralized functions 1 1 or distributions. 

If we differentiate both sides of (VII. 1) and interchange 
integration and differentiation,15 
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(VII. 3) 

If (VII. 2) is inserted in (VII. 3), it produces a term 

r dX23 dx13 
- Z (1 + !12) c O(X23 - 1) ---- O(X13 -1)dx3 , 

dx12 dx12 
which has discontinuous behavior at x12 = 2. 

This can be proven by changing to bipolar coordinates 
and noting that 

dX23 dx13 X13x23 -------
dx12 dX12 X12 

= (Xl 2 - (X~2 + X~3 - X~3) (x12 - (X~2 + X~3 - XiJ») 

\ X~2 
is infinitely differentiable as a function of x12 and x13 
so that the integral 

- 21T J O(X23 - I)O(x13 - 1) 

x(x12 - (x~2 + xiJ -xh» (X12 - (X~2 + X~3 -Xh») 

4x~2 

X dx13dx23 

can be performed. 

For X12 > 2, (VII. 4) must be 0 because x23 and x13 
cannot simultaneously equal 1. For x12 < 1, (VIT.4) is 
continuous and at X12 = 2, Eq. (VIT. 4) equals - 1T /4. 

Knowing that d 2p2 (X12)/dx~2 has step function behavior 
at x12 = 2, we can scontinue the above process to show 
that d2np2s (x12)/dx12

2n is discontinuous at x12 = 
(n + 1). 

Consider the equation 

P'2
s

(x12) =Z(p +.r P2(X23 )!13dx3)' 

From the above analysis the fourth derivative will con
tain the terms 

(VII. 4) 

which has discontinuous behavior at X12 = 3 and x12 = 1. 
If x12 < 1, the above integral is 0 since X23 cannot equal 
2 and x13 equal 1 simultaneously. Equation (VII. 4) is 
continuous for x12 > 1, and, at X12 = 1, (VII. 4) equals 
- 1T/4. 

Therefore P' 2 (x12) also shows discontinuous behavior 
in the fourth d'erivative at X12 = 1. This behavior is also 
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exhibited by the solution to the Percus-Yevick equation 
for hard sphere potentials.13 

VIII. DISCUSSION OF RESULTS 

A perturbation scheme has been introduced which gen
erates a solution to the Kirkwood-Salsburg hierarchy of 
integral equations. The power series in z obtained by 
Ruelle3a,b can be recovered by expanding each term 
in our perturbation expansion in a z series. 

The advantages of this expansion are twofold. We gen
erate an approximation scheme which can be improved 
step by step with a well-defined procedure. 

The second advantage is the possibility of obtaining for
mal properties of the solutions of the Kirkwood-Salsburg 
equation by examining the structure of the solutions of 
an approximate, much simpler hierarchy. 

Two properties of the apprOXimate hierarchy were in
vestigated, and the results are consistent with what is 
expected from the distribution functions. 
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APPENDIX 

It is the purpose of this appendix to justify three 
assumptions employed in Sec. VI. 

(1) The assertion that 
A eiKalxl 

F(lxl) =~ Ixl 

(2) The assumed uniform convergence of this series 
which enabled us to take the limit of F( I x I) term by 
term. 

(3) The often used assumption of commutability of 
limit and integral. 

At the outset it should be clear that for finite range 
potentials 

I !(Ixl )e-iI •x dx 

is an analytic function of I K I and hence bounded. The 
analyticity guarantees that the Singularities of 

" 1/[1- z!(IKI)] 

are isolated poles. 12 

A 

-L L 

FIG. 1 
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Clearly for the range of I z I considered 

I z I If I (I K I ) < 1 

for all real IKI so that for real IKI 

l/[I-zf(IKI)] < M. 

We are now in a position to prove the first assertion. 
By definition 

iI.x (t( I K 1»2 
F' (Ixl) = z2 I e "elK. (AI) 

I-z!(IKI) 

Performing the integrations over the angles gives 

I I 
41TZ2 J"" IKI If(IKI))2 sin(IKllxl) I I 

F'( x ) == - " d K • (A2) 
Ixl 0 1 - z!(lKI) 

Recognizing thatf(IKI) is an even function, (A2) can be 
written as 

41T "" IKI(zj(IKI»2eiIKllxl 
F'(lxl) =-1 Ii " dlKI, (A3) 

x -"" I-z!(IKI) 

where I K I now denotes a variable which can assume all 
values from - 00 to + 00. We will eValuate the integral 
over the contour in the complex IKI plane (see Fig. 1). 

We have 

If(IKI) I = II e-
iI

•
x !(Ixl)dx I 

.;; B I; t~IISin(IKllxl) Idlxl, 

where a is the radius of the potential. 

If lOKI is complex with a modulus R, then 

" fa Rlxl I I 1!(lKI)I .;; B81T 0 e d x 

.;; aB81Te Ra 

for R > 1. Consequently, if Ixl > a, the contribution from 
BCA goes to 0 as R ~ 00 and 

AcPiKalxl 

F'(lxl) =~ Ixl ' 

where we have assumed that the roots Ka of 

1- zf(lKI) 

are of the first order, and 

A 
iKalxl 

ae 

is the residue of the integrand at Ka' 

(A4) 

(A5) 

The roots of (A5) were assumed to be of first order. 
Clearly it is irrelevant what order they are for in the 
limit as R ~ 00 multiple roots will only change the fac
tor A a' but not the form of the large R behavior. It will 
also not affect any of the following analyses. 
Turning to assumption (2), consider the integral 

21TZ2jL IKI<f(K»2eiIIllxl 
I (x) diKI. 

L =lif -L I-zf(IKI) 
(A6) 
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From the above analysis 

N(J.) A ei~lxl 

I L(ixl) = ~1 Ixl + R BCA> 
(A7) 

where R BCA is the contribution from BCA in Fig. 1. 

As the roots of (A5) are isolated clearly, either the 
number of terms in (A7) is finite or N(L) is an increas
ing function of L. Since R BCA becomes smaller as L 
gets larger, the series in (A7) becomes a better repre
sentation of I L(x) as L increases. The series can, in 
fact, be made arbitrarily close to IL(lxl) for arbitrary 
Ixl as long as Ixl is larger than the range of the po
tential. Clearly if 

IKI (f(IKI»2eiIKllxl 
f'xo x dlKI 
-"" 1 - z!(IKI) 

(AS) 

is uniformly convergent then (A7) is a uniformly conver
gent series. 

Within the range of I z I with which we are concerned and 
for real IKI, 

11-zf(IKI)1 < M< "". 

Clearly (AS) will be uniformly convergent if 

J; IKI U(IKI ~2 sin(iKllxl) dlKI 
1-z!(IKI) 

(A9) 

is. We can guarantee the uniform convergence of the 
above integral by finding a function,14 independent of 
Ixl which bounds the absolute value of the integrand 
throughout the range of integration and whose integral 
over that range converges. 

The function we propose is 

H(IKI) = MIKI U(IK/ »2, IK/ < 1, 

= MIK/ (f(IK/)2, /K/ ~ 1. 

The iIitegral of H( / K I) will clearly converge if 

J; IKI2lf(IK/ »)2dIKI 

is convergent: 

Employing Parseval'sll theorem, we have 

J (f( / K / ) )2dK = J (f(x»2dx, 
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which is clearly convergent. Therefore, (A4) is a uni
formly convergent series. 

Assumption (3) will be justified by examples. We will 
justify the limit integral interchange of (VI. 6). 

We have 

(AlO) 

The interchange is justified if the above \ntegral conver
ges uniformly. 

G(/X23 1) is defined only over a finite range of IX23 1 and 
is bounded. F'( 1 x12 - X2 31) is also bounded. Therefore, 
a positive semidefinite function D(lx231) can be found9 

which bounds the integrand in (A10), is independent of 
1 X12 1 , and for which 

J D(lx23 1 )dx23 < "". 

One chOice for that function is 

MH(lx2 3 1 ), 

where M is the product of the bounds of G(IX23 1) and 
F/(lx12 -x23 1) andH(lx23 1) is the characteristic 
function of the range of integration. 

·Part of a thesis submitted to Temple University as partial 
fulfillment of the requirements for the degree of Doctor of 
Philosophy, September, 1972. 
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The enumeration problem that arises in the derivation of low-temperature and high-field expansions 
for the Ising model of a ferromagnet and antiferromagnet is studied. The method of partial 
generating functions (complete codes) is developed and a principle of complete code balance is 
explicitly stated. The detailed application of the method to a number of lattices is described and 
substitutions given that interpret the generating functions of certain lattices on the corresponding 
shadow lattice. It is shown that in zero-field and two dimensions some of these substitutions reduce 
to the well-known star triangle and magnetic-moment results. 

1. INTRODUCTION 

In this paper we continue our investigation of the enu
merative problem that arises in the derivation of low
temperature and high-field expansions for the Ising 
model of a ferromagnet and antiferromagnet; a general 
introduction is given in the first paper1 of this series, 
hereinafter referred to as 1. 

Following I, we write the free energy per spin (F) in 
the form 

F = - tqJ - mH - kT InA(I-',u), (1.1) 

where q is the coordination number, J the interaction 
energy as defined in I, m the magnetic moment per 
spin, H the applied magnetic field, k Boltzmann's con
stant, and T the absolute temperature. The expansion 
variables u and I-' are defined by 

u = z2 = exp(- 4J/kT)}. 

I-' = exp(- 2mH/kT) 
(1.2) 

Series developments for InA arise from a study of per
turbations on the ordered state; a detailed description 
of their direct derivation is given in 1. The expansion 
is there studied as a development in powers of j.I in the 
form 

(1. 3) 

where the coefficients L. are polynomials in u. Con
tributions to L. arise from all the possible perturba
tions of s spins and this arrangement of the expansion 
we call the I-'-grouping; alternatively it may be regarded 
as afield-grouping providing high-field expansions in 
the magnetic parameter I-' (I-' =:= 0 when H = C() for fixed 
temperature. The expansions are valid for both the 
ferromagnetic and antiferromagnetic problems. We call 
the coefficients L. high-field polynomials. 

For many applications to the ferromagnetic case, for 
example the derivation of the spontaneous magnetization 
and the specific heat and susceptibility in zero field, it 
is more convenient to group the expansion in powers of 
u (or z) and we shall write 

(1.4) 

1060 J. Math. Phys., Vol. 14, No.8, August 1973 

This we call the u-grouping; alternatively, it may be 
regarded as a temperature-grouping providing expan
sions in the temperature parameter u, for fixed values 
of the field-variable 1-'. We call the polynomials 1/1. 
ferromagnetic polynomials. For the honeycomb lattice 
fractional powers of u occur in (1. 4) and to avoid these 
we modify the definition of 1/1. by replacing u by z. 

An important generalization is to the case of lattices 
which can be decomposed into two equivalent sublattices 
A and B. We distinguish the spins on these two sub
lattices by writing 

exp(- 2mA H/kT) = I-'}. 
exp(- 2mBH/kT) = II 

For the field grouping we define a set of sublaltice 
polynomials, L •. t 

(1. 5) 

(1. 6) 

and for the temperature-grouping a corresponding set 
of polynomials in I-' and II 

InA = 61/1.(1-', 1I)u·. (1. 7) 
• 

One application of these sublattice polynomials is to the 
ordered region of an antiferromagnet. (H < He' the criti
cal field); J is assumed to be negative and we write 
J' = - J. We introduce new variables 

y = exp(- 2J' /kT), W = y 2 (1. 8) 

and the free energy per spin is now 

(1. 9) 

In the temperature-grouping I-' and 1/1-' occur symmet
rically and it is convenient to write 

(1. 10) 

and define a new set of anti ferromagnetic polynomials. 
I/I.a, by 

InAa = L; I/I.a(fj)w" (1. 11) 
s 
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As in the ferromagnetic case we introduce a modifica
tion for the honeycomb lattice; fractional powers are 
avoided by replacing w by y in (1.11). 

To derive a useful number of terms in all the above 
expansions we introduced in I a method of partial gene
rating functions. In Sec. 2 we summarise the method. 

2. METHOD OF PARTIAL GENERATING FUNCTIONS 

The method is to provide partial generating functions 
Fn for the sublattice polynomials L s .t ; each Fn corres
ponds to the exact solution when the number of spins 
overturned on one sublattice, by convention the B sub
lattice, is equal to n. The contributions can be set out 
in an array (omitting the field variable): 

F 0 = Lo.o + L 1•0 + L 2•0 + L 3 •0 + L 4 •0 + .. . 
F1 = L O•1 + L 1.1 + L 2 •1 + L 3 •1 + .. . 

(2.1) 
L O•2 + L 1•2 + L 2•2 + .. . 

LO.3 + L 1 •3 + .. . 
LO.4 + .. . 

where L o.o = O. 

An important step is to exploit the symmetry condition 

(2.2) 

which holds because the two sublattices are equivalent. 
It follows that the first n partial generating functions 
are sufficient to determine the expansion of In A cor
rect for all s + t <;; 2n + 1. To take a speCific example, 
the polynomials through L5 can be derived from the 
generating functions through F 2' In the sequence of 
sublattice polynomials contributing to L5 

L 5.0 + L4,l + L 3.2 + L 2•3 + L 1.4 + L O.5 (2.3) 

the last three follow from the symmetry condition. 

The generating functions are conveniently written as 
sums of integer sequences, which we have called codes, 
each code being multiplied by an occurrence factor, 

Fn = L; (A, 0, ~,y,"'), (2.4) 

For example, on the honeycomb lattice 

F3 = 1(6,3,3) + 9(7,5,2) + 1(7,6,0,1) - 30(8,7,1) 

+ 19t(9,9). (2.5) 

We shall not introduce a notation for the occurrence 
factors; the length of the individual integer sequences 
never exceeds the coordination number of the lattice 
by more than one, so that all honeycomb codes, for 
example, contain at most 4 parameters. We call F" the 
complete nth code;the codes are interpreted by the sub
stitution 

(A,o,~,y, ... ) = yn(l + bX)O:(l + b 2X)B 

x (1 + b3X)Y .•. /(1 + Xp·, (2.6) 

when after expansion of the right hand side the coeffi
cient of X S ynb r represents the contribution of s-over
turned A-spins, n overturned B-spins having r nearest 
neighbor links between them. 

The expansion can be obtained expliCitly in powers of 
J.L, and z by making the further substitutions 

b = 1/z2. (2.7) 
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(2.8) 

For convenience we adopt the convention that each sub
lattice has N sites; thus, in (2.5), and the sublattice poly
nomials that follow after the substitutions (2.6) and 
(2.7), we work on a 2N site lattice. When we particu
larize to the simple model with tJ. = II, we employ the 
same codes and take half the resultant polynomials to 
obtain the Ls (u). 

We also assume that the sublattice equivalence or sym
metry condition (2. 2) is always exploited. For example, 
if we suppose the array (2.1) to be generated by the 
complete codes through F 4 it is immaterial whether 
LO.3 is supplied by symmetry or from F 3; we assume 
the first method, because later we shall introduce gene
rating functions which are not complete codes (partial 
codes) and the second method could then give an in
correct contribution. 

An important consequence of the symmetry condition is 
that any complete code Fn must reproduce the sublattice 
polynomials Lm II correctly for all m < n. For example, 
F 3 must when expanded give values of Lo 3' L1 3' L2 3 
which agree with their symmetric counterparts derived 
from F 0' F 1 and F 2 in the array (2.1). This principle of 
complete code-balance provides a check on the correct
ness of each new complete code as it is added. It im
plies a set of constraints on each complete code or par
tial generating function. 

In the development of the theory we shall often require 
certain properties of the individual codes which con
tribute to a complete code; we define at this stage some 
concepts we shall use throughout our treatment. 

If a code (A, 0, ~, y ••• ) occurs in Fs we call s the arder 
of the code. The complete sth code is then the total of 
all codes of order s and is appropriate for the deriva
tion of field-groupings. For temperature-groupings . 
we shaH find that an important property is the highest 
power of b that occurs in the coefficient of X" in the 
expansion of (2.6); we call this the nth rank of the code. 
Finally, for any code (A, 0, (3, y, 6, E, ••• ) we define the 
quantity 

y + 26 + 3£ + ... (2.9) 

as the class of the code. We show later that the class of 
a cOde, and its successive ranks (for n = 1,2,3· .. ), are 
of importance in a systematic treatment of the u
grouping. 

The first few complete codes on a lattice can readily be 
derived by classifying all the possible arrangements of 
the appropriate shadows; the complexity of this work 
increases very rapidly with the order of the codes. In I 
we introduced a classification based on a partially iso
morphic Ising problem on a related shadow laltice. In 
Sec.3 we summarize some shadow systems and derive 
new substitutions which interpret the codes in a different 
way and provide results for the ISing problem on the 
shadow lattice. 

3. SHADOW LATTICE TECHNIQUE 
The shadow lattice is the lattice formed from the sites 
of the B sublattice with a bond system chosen to repre
sent the different possible overlappings of the shadows 
cast on A-sites by overturned B-spins. 

Honeycomb-triangular code system 

As a first example we take the honeycomb lattice. The 
complete shadow system is illustrated in Fig. 1 (a) and 
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(a) 
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(b) 

~ 
~ 

FIG. 1. (a) Honeycomb lattice and its complete shadow system; the full 
circles represent the B-sites. (overturned B-spins). (b) Correspond
ing shadow lattice. This is a triangular lattice with the original B
sites as vertices. The triangles have alternate parity; those marked 
with a cross are of the significant parity and correspond to three 
shadows that meet at one point. 

(a) (b) 

FIG. 2. 0 B-spins,. overturned B-spins. (a) Honeycomb with 5 spins 
overturned on the B sub-lattice. The five shadows correspond to the 
code (10,6,3, 1). (b) Corresponding shadow graph. 

the corresponding shadow lattice in Fig. 1 (b). It should 
be noted that the shadow lattice is not the triangular 
lattice delineated by the edges of the triangular shad
ows. Figure 2 illustrates a particular situation in 
which 5 B-spins are overturned; each casts a shadow on 
3 A-spins, but some A-spins lie in more than one 
shadow. The corresponding code, (10,6,3,1) simply 
expresses the fact that a total of 10 spins are affected; 
6 lie in only one shadow,3 in two shadows and 1 in three. 

Each triangular shadow can only touch another at a 
vertex (and never along an edge) and no more than three 
shadows can meet at any point; thus, the codes involve 
at most four parameters. For any code (A,o:,{3,y) we 
have the relation 

(3.1) 

which merely defines the dummy parameter A intro
duced in I as a consistency check on the data. The 
three parameters 0:, (3, yare the number of A-spins 
which lie in 1,2 or 3 shadows, respectively. If s is the 
number of B-spins, that is the arder of the code; then, 
since each B-spin casts a shadow on 3 A spins, 

3s = 0: + 2{3 + 3y. (3.2) 

The parameter {3 arises from pairs of triangles with a 
vertex in common; each of these implies a nearest 
neighbor bond in the corresponding graph on the shadow 
lattice (shadow graph). The parameter y arises from 
triplets of triangles with a vertex in common; these 
imply a nearest neighbor triangle in the shadow graph. 
Only alternate triangles can correspond to contacts of 
this type and we regard each triangle of the shadow 
lattice as having a parity; the parity corresponding to 
y we call the significant parity. We have the scheme: 

Triangle in 
shadow lattice 

~ 

(Significant 
parity) 
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Any set of overturned spins on the honeycomb B-sub
lattice corresponds to a set of sites on the shadow 
lattice; if this set of sites is regarded as a strong em
bedding the total number of bonds, r, in the embedded 
graph (the shadow graph) is 

r = (3 + 3y, (3.3) 

because each bond will correspond to the contact of 
two shadows unless it lies in a triangle of significant 
parity; and each triangle of significant parity has three 
bonds but contributes only once to y. 

The last result has an important application. The com
plete honeycomb code Fs corresponds to the complete 
set of all graphs with s sites on the triangular shadow 
lattice; since the number of bonds in each shadow 
graph can be deduced from the corresponding code, Fs 
contains all the information required to determine the 
high-field polynomial Ls on the triangular lattice. From 
(3.3) we obtain the corresponding power of u for the 
Ising model on the triangular lattice as2 

3s - r = 0: + (3. (3.4) 

It follows that the substitution 

(A, o:,{3,y) = /J(a+2B+3y)/3u a + B (3.5) 

interprets the honeycomb codes in an alternative way 
and provides the high-field polynomials for the triangu
lar lattice. We develop the theory of this substitution 
in Sec. 4. 

To obtain a complete Fn for the honeycomb lattice it 
would suffice to find the codes corresponding to every 
low temperature configuration of n spins on the tri
angular lattice; this is a straightforward but fairly 
intricate operation because of the parity problem. The 
details of the first five complete codes are fully listed 
in I. 

The division of triangles into the two parities is clearly 
symmetric, but if more than one triangle occurs in a 
shadow graph the distribution into parities ~ and 1] can 
be quite involved. For example the two component graph 

has a total count of 12N2 - 282N, but divides as 

(3N2 - 72N)~ 31], 

(6N2 - 138N)~21]2, 

(3N2 - 72N)~1]3, 

which is not quite symmetric, in the sense that the 
division is not the same as that for ~1](~ + 1])2. 

(3.6) 

In this particular system, once the configurational data 
on the shadow lattice has been encoded it is not possible 
to recover the topology of the shadow graph although it 
is pOSSible, as we have seen, to recover the number of 
sites and bonds. Because of the substitution (3.5) the 
codes can be thought of either as honeycomb or tri
angular codes; we refer to the honeycomb-triangular 
code system. 

For the honeycomb-triangular code system the last 
parameter (y) determines the class of the code; in this 
system this is equivalent to the number of triangles of 
significant parity in the corresponding shadow graph. 
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Diamond-face-centered cubic code system 

As a second example we take the diamond lattice. The 
shadows are tetrahedra and the complete shadow sys
tem is a straightforward generalization of that des
cribed for the honeycomb lattice. The shadow lattice 
is the face-centered cubic lattice formed by the B-sites 
alone, joined by first neighbor bonds. The B-sites lie 
at the centers of the tetrahedral shadows and the edges 
of these tetrahedra also delineate a face-centred cubic 
lattice, distinct from the shadow lattice. The only pos
sible contacts are at a common vertex; never a com
mon edge or common face. As in the previous example 
mutual contacts between two tetrahedra correspond to 
a bond in the shadow graph; mutual contacts between 
three tetrahedra (at a common vertex) correspond to 
half the triangles on the face-centred cubic (significant 
parity); mutual contacts between four tetrahedra also 
occurs in two ways in accordance with the following 
scheme: 

Tetrahedron in 
shadow lattice 

~ 

(Significant 
parity) 

11 

(Insignificant 
parity) 

The general code (A, a, (3, y, 15) now contains 5 para
meters; if a shadow graph has s sites and r bonds a 
generalization of arguments used before establishes the 
results 

4s = a + 2f3 + 3y + 415, 

r = (3 + 3y + 615, 

and the corresponding substitution to (3.5) 

(A, a,{3,y,.o) = /-I(a+26+3y+46)/4 u(3a+46+3y)/2 

(3.7) 

(3.8) 

(3.9) 

interprets the diamond codes in an alternative way and 
provides the high-field polynomials on the face-centered 
cubic lattice. 

We can now regard the codes as 1 diamond-face-cen
tered cubic system. The parameter y is the number of 
triangles of significant parity in the shadow graph, it 
being understood that none of these form part of a tetra
hedron of significant parity. The parameter 0 is the 
number of tetrahedra of significant parity. The class 
of each code is now y + 20 and is determined by the 
number of triangles and tetrahedra of significant parity. 

All the results for the diamond-face-centered cubic system 
apply directly to the white tin-close-packed hexagonal 
system; these two systems are so close numerically 
that we have restricted our treatment to the former. 

Simple quadratic code system 

As a third example, we take the simple quadratic lat
tice. The general shadow system is composed of 
squares the edges of which delineate another simple 
quadratic lattice. The shadow lattice is formed from 
the B-sites of the original lattice which form a simple 
quadratic array. First neighbor bonds of this array 
correspond to two shadows touching along an edge; 
second neighbor bonds correspond to two shadows 
touching at one corner only. The shadow lattice is 
therefore a simple quadratic lattice with first and 
second neighbor bonds. We illustrate a particular situ-
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(a) (b) 

• 

FIG. 3. 0 B-spins, • overturned B-spins. (a) Simple quadratic with 4 
spins overturned. (b) Corresponding shadow graph. • • ,first 
neighbor bond.. I ., second neighbor bond. 

ation in Fig. 3 (a) and the corresponding shadow graph 
in Fig. 3 (b). 

As in the previous example, the general code has 5 
parameters. If r 1 and r 2 denote the number of first 
and second neighbor bonds in the shadow graph corres
ponding to (A, a, (3, y, 0), we have the relations 

4s = a + 2{3 + 3y + 46, 

2r 1 + r 2 = (3 + 3y + 60. 

(3.10) 

(3.11) 

It follows that the simple quadratic codes can be used 
to derive the solution for the simple quadratic lattice 
with second neighbor interactions if the first energy 
is twice the second. Unlike the two previous shadow 
systems, the representation requires the introduction of 
second neighbor bonds and this greatly complicates the 
treatment. All mutual contacts of three squares at a 
common vertex correspond to a triangle on the shadow 
lattice, all mutual contacts of four squares at a com
mon vertex to a tetrahedron; the problem of parity no 
longer arises. 

Simple and body-centered cubic code systems 

The shadow systems for the simple cubic and body
centered cubic lattices may be developed along the same 
general lines. The codes (A, a, (3, y, ... ) that contribute 
to Fs must evidently all satisfy 

qs = a + 2{3 + 3y + 40 + ... , (3.12) 

where q is the coordination number of the original lat
tice, not of the shadow lattice. A second equation can be 
derived which relates the codes to some special Ising 
problem on the shadow lattice; the body-centered cubic 
lattice is described in more detail in I. 

4. GENERAL RESULTS: q = 3 SYSTEMS 

In this section we investigate some general results that 
follow from the substitutions derived in the previous 
section. 

We take the honeycomb-triangular system as the model 
of a q = 3 system; in general, the results of this section 
will apply to other q = 3 systems such as, for example, 
the hydrogen peroxide-hypertriangular system. 3 In this 
section we use U for the triangular lattice variable and 
z for the honeycomb variable in their usual sense; that 
is, we shall assume u = exp(- 4J /kT) and z = 
exp(- 2J* /kT), where J and J* are the interaction ener
gies for the triangular and honeycomb lattices, respec
tively. 

As we have shown in Sec. 2, each honeycomb code 
admits of two fundamental substitutions. First, from 
(2.6) and (2.7), 

(A,a,{3,y) 

= (lIz3)n(1 + tJZ)a(l + tJZ-l)6(1 + /-IZ-3)Y/(1 + /-IZ3)a+6+y, 

(4.1) 
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which yields formally, after setting /.I = II, 
2 In Anc = In(l + /.IZ3) + L; Fn , (4.2) 

where the 2 on the left-hand side arises because the 
shadow lattice has half the original number of sites; 
the summation L; is taken over all possible codes, 
interpreted by (4.1). 

Second, from (3.5), 

(A, a,{3,y) = !J.nuet+/3, (4.3) 

which yields 

InAT=L;'Fn , (4.4) 

where again the summation L;' is taken over all possible 
codes but now interpreted by (4.3). 

We now observe that in zero field the substitutions 
(4.1) and (4.3) reduce, respectively, to 

(A, a,j3,y) = [z(l + z)/(l + z3)]et+6 = w et +6, 

(A, a,j3,y) = ucx+6. 

(4.5) 

(4.6) 

It follows that in powers of the variable w defined by 
(4.5), 

w = z(l + z)/(l + z3), (4.7) 

the honeycomb expansion for In A [apart from the 
In(l + z3) term] will be term-by-term identical with 
the triangular expansion. This formal equivalence 
corresponds to the well-known star triangle relation
ship4 

(4.8) 

To extract the spontaneous magnetization, we require 
the quantity 

I = lim (1 - 2/.1 aaL - 211 aaL) , L = InA. (4.9) 
H .... O /.I II 

To evaluate this, it is convenient to exploit the sub
lattice symmetry; the substitution (4.1) is not symmet
ric in /.I and II, but the resulting full series expansion 
must be. It will, therefore, suffice to replace (4.9) by 

I = 1~ (1 - 411 ~~) , (4.10) 

and from (4.1) and (4.3) the corresponding substitu
tions that correspond to this operation become for each 
code simply 

Honeycomb: - 2nw et + 6 , 

Triangular: - 2nuet T 6, 

which is equivalent to the standard result5 

IH"~z) = I-zi,w). 

The reduced susceptibility is derived from 

X = 1~ [40 a~ + II aavYL] 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

and this reduces because of the symmetry of the resul
tant function after summation to the evaluation of 

(4.15) 
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ExpliCitly, each honeycomb code makes the contributions 

aL 2 - = nw cx +tl , 
all 

a2L 2 -- = nw<>+t>[({3 + y)(l - z3) 
a/.lav 

+ (a - (3)z(l - z)]I(l + z3). (4.16) 

It should be emphasised that these results only hold 
because there is an implied summation over all the 
codes; an individual code will generate an asymmetric 
function of /.I and II. We now use the result that follows 
using (3.2), 

(j3 + y)(l - z3) + (a - j3)z(l - z) 

= n(l - z3) - t{a - (3)(1 - z)3, (4.17) 

to derive the final result for the ferromagnetic sus
ceptibility Xl: 

xkc = 4L; w<>+tl{n 2 + n[n(l - Z3) 

- t{a - j3)(1 - z)3]1(l + z3)}. (4.18) 

The corresponding antiferromagnetic susceptibility, 
Xa , may be extracted in an analogous manner. The for
mal isomorphism between the two problems enables 
us to obtain the result by replacing z by l/y. The 
result is found to be 

x'kc = 4 L; w<>+6{n 2 - n[n(l - y3) 

- t(a - 13)(1 - y)3]1(l + y3)}, (4.19) 

where w =y(l + y)/(l + y3). (4.20) 

The ferromagnetic susceptibility of the triangular lat
tice is simply 

(4.21) 

On taking the average of the ferromagnetiC and anti
ferromagnetic susceptibilities of the honeycomb lattice 
at any temperature the numerical valu~s of y and z are 
equal. The numerical values of wand ware also equal. 

Thus, in (4.18) and (4.19) the second term cancels and 
from (4.21) we obtain 

~txlIc(z) + X~c(z)] = XIT(U), U = z(l + z)/(l + z3) 

(4.22) 
which is the well-known magnetic moment result of 
Fisher. 6 

q = 4 systems 

The code systems that arise for q = 4 are more varied 
than those for q = 3; the theory becomes more complex 
and less generally useful. We confine our treatment to 
a few observations on the two systems we have already 
described. 

Each code (A, a, 13, y, 0) of the diamond system, or the 
simple quadratic system, has a direct substitution which 
reduces in zero-field to the form 

(A,a,{3,y,o) = [z(l + z2)/(1 + z4)]<>+r[2z2/(1 + z4)]6 
(4. 23) 

to yield the expansion in z on the diamond or simple 
quadratic lattice respectively. Each diamond code can 
also be interpreted in zero-field on the face-centred 
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cubic lattice by (3. 9), which reduces to 

(A, a,{3,y, 6) = z3a+48+3y = [z3]a+Y[z4]6 (4.24) 

and, thus, there is a formal isomorphism between the 
resultant expansions if sufficient detail is retained. 
Explicitly, if we write 

W~ = z{l + z2)/{1 + z4), w! = 2z 2/{1 + z4) (4.25) 

and make the substitution 

(4.26) 

we have the relationship 

(4.27) 

This is the low temperature three-dimensional star 
tetrahedron substitution analogous to the two-dimen
Sional star triangle substitution. Because of the neces
sity of distinguishing between w1 and w2 it is apparently 
of little practical use. A similar formal relationship 
can be given for the simple quadratic lattice and its 
shadow lattice (when for the latter the first interaction 
energy is twice the second). 

The results of this section are simple in form and we 
have developed them for application to our subsequent 
theoretical treatment. They are not suitable for the 
practical problem of obtaining series expansions since 
they do not exploit the sub lattice symmetry and, there
fore, uneconomic use is made of the codes. The objec
tion can be countered by expanding each code in a special 
way, but it is just as simple to work in the presence of a 
field and take the zero-field limit afterwards. 

In the particular instance of the honeycomb-triangular 
pair (or the hydrogen peroxide- hypertriangular pair) the 
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code treatment is closely analogous to the star-triangle 
substitution in the presence of a field and can alter
natively be treated as such; the resultant substitutions 
are no less cumbersome. 

5. CONCLUSIONS AND SUMMARY 

We have summarized the notation of I and outlined the 
method of partial generating functions. We have stated 
expliCitly the principle of complete code balance; this 
provides a check on each new partial generating func
tion. We show in subsequent papers how the principle 
may be exploited in the derivation of further codes. 
The shadow systems of a number of lattices have been 
described and substitutions given that interpret the 
generating functions of certain lattices on the corres
ponding shadow lattice. It has been shown that in zero
field and two dimensions some of these reduce to the 
well-known star triangle and magnetic moment results. 
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The derivation of series expansions appropriate for low temperatures or high applied magnetic fields 
for the two-dimensional Ising model of a ferromagnet and antiferromagnet is studied as a field 
grouping. New results are given for the high field polynomials for the triangular lattice to order 10, 
the simple quadratic lattice to order 15, and the honeycomb lattice to order 21. 

1. INTRODUCTION AND SUMMARY 

In this paper we extend the series expansions of three 
two-dimensional lattices, the honeycomb, Simple quad
ratic and triangular, as a field or /-I-grouping. We have 
already introduced the problem and given the general 
theory in previous papers,l.2 hereinafter referred to 
as I and n, respectively. It is our main object to com
municate the results since these have many applications; 
the actual intricacies of the calculation we give only in 
outline. Few will wish to repeat such calculations and 
each lattice has to be treated on its merits, sometimes 
adopting one method, sometimes another. The extension 
of field groupings is a first logical step towards the ex
tension of temperature groupings which we describe 
subsequently. 

We give new results for the high-field polynomials L9 
and L 10 on the triangular lattice, for the complete code 
F 7 and L14 and L 15 on the Simple quadratic lattice, for 
F 7,F 8,F 9,F 10 and L 14 ,L15 , L 16 , L 17, L 18,L19 , L 20 , 
L21 on the honeycomb lattice. 

2. DERIVATION OF COMPLETE CODES FOR 
HONEYCOMB AND TRIANGULAR LATTICES 

As we have shown in Paper n, Sec. 3, the partial generat
ing functions or complete codes for the honeycomb 
lattice can also be regarded as codes for the triangular 
lattice. We begin by formalizing the concept of the 
honeycomb-triangular code system. 

We observe that n triangular shadows that do not touch 
will correspond to the code (3n, 3n); if any two have a 
common vertex, and p is the number of such pairs of 
contact, the code will be (3n- p, 3n-2p,p); finally if t is 
the number of vertices common to three triangles the 
most general possible code will be 

(3n-p-2t, 3n-2p-3t,P, t) (2.1) 

and this defines what we shall call the algebraic code 
system. The final parameter t is the number of triangles 
of significant parity in the corresponding graph on the 
shadow lattice; the general form of (2.1) follows from 
equations (3.1) and (3.2) of n. 
If we set n = 9, P = 12, t = 0 in (2.1) we obtain the 
code (15,3,12) which corresponds to an arrangement 
of nine triangles with 3 free and 12 single-contact ver
tices. This can be realised as illustrated 
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and we shall say that the code is graphical;at least one 
graph can be found on the shadow lattice to correspond 
to it. On setting n = 9, P = 13, t = 0 we obtain the 
code (14,1,13) which we shall call nongraphical since it 
is not possible in practice to arrange nine triangles to 
correspond to it. 

In the first example, the underlying shadow graph can 
also correspond to a second arrangement of nine tri-
angles '\ ,~, 

with code (18,12,3,3). In this latter case, the three 
triangles of the shadow graph are all of the significant 
m parity and correspond to triple contacts. 

The algebraic code system is afinite set of codes for 
fixedn, since clearly limits can be placed on the para
meters p and t; the graphical code system is a smaller 
subset, obtained by deletion of the nongraphical codes. 

Since the Shadow lattice is a first neighbor lattice, it 
is not difficult to derive the first few complete codes 
in a straightforward manner by enumerating all the 
low temperature configurations on the triangular lattice. 
The number of configurations increases rapidly with n; 
the number of distinct graphical codes in a complete 
code only slowly. Details of the enumeration up to 
n = 5 are given in I together with the result for F 6' We 
have completed F 7 and F 8 in essentially this way. Be
yond n = 8 we proceed indirectly. 

The triangular polynomial L9 has 17 coefficients but 
these are not all independent; since the high tempera
ture specific heat and susceptibility expansion are 
available to adequate length these coefficients must 
satisfy 11 constraints (I, Sec. 2) and these constraints 
can be used to fill in any 11 coefficients of L9 if the 

Copyright © 1973 by the American Institute of Physics 1066 
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remaining 6 are known. The method, in its simplest 
form, was first described by Domb,3 and subsequently 
developed by other authors.4 It is convenient to provide 
the lowest powers of u by direct counting since these 
correspond to graphs with the most bonds. We provide 
the first six coefficients and find 

L9 = 27u11 + 160u12 + 483u13 + 228u14 - 4 181u15 

- 16 704u16 - 11109u17 + 43 868 t u18 

+ 375 483u19 + 408 072u20 - 3 019 394u21 

- 6 438 150u22 + 40 681 902u23 - 72 302 016u24 

+ 63438 876u25 - 28 314 960u26 + 5157414 i U 27• 

(2.2) 
For the corresponding F 9 it is found by inspection that 
there are 47 graphical codes; in other words, there are 
47 nonzero coefficients to be determined. These coeffi
cients cannot all be independent since, by the prinCiple 
of complete code balance (n, Sec. 2), F 9 must generate 
all the sublattice polynomials L",. 9' r < 9, correctly in 
agreement with F 0 through F 8' The determination of the 
number of linearly independent simultaneous equations 
that must be satisfied to ensure this consistency requires 
some detailed analysis and is found to be 36. The com
plete code must also reduce correctly, under the substi
tution II (3.5), to the corresponding low temperature 
polynomial on the triangular lattice (2. 2) which we have 
completed by the method of Domb. This last condition 
yields a further set of 17 linearly independent equations, 
not necessarily independent of the previous set. Of the 
combined total of 53 constraints only 44 are found to be 
linearly independent; direct determination of a linearly 
independent set is difficult. To complete F 9 it is only 
necessary to supply 3 coefficients although these cannot 
be chosen completely at random. We have supplied the 
three codes 

6(15,4,10, 1) } 

1(15,3,12) 

27(16,5,11) 

by direct counting, and completed F 9 by solving 44 
linearly independent equations. 

(2.3) 

In F 10 we find 58 graphical codes with 45 linearly inde
pendent constraints ariSing from the previous 9 com
plete codes (principle of complete code balance). 
Direct calculation of the corresponding L 10 for the 
triangular lattice by the method of Domb is difficult. 
L 10 is a polynomial with 20 coefficients. Instead, 
therefore, we have exploited the fact that F 10 must re
duce correctly to L 10 for those powers of u which are 
conveniently counted directly (up to u16 inclusive); and, 
furthermore, must generate correctly all those powers 
of z in L 20 and L21 for the honeycomb lattice which are 
conveniently counted directly (up to z16 inclusive). In 
other wordS, we supply the partial information 

L 10 = 3u11 + 86u12 + 432u13 + 837u14 + 449u15 

- 10 353u16 + ... (2.4) 

for the triangular lattice and 

L 20 = 43iz12 + 5829z14 + 125 336iz16 + .,. 

L21 = 387z 13 + 26 111z 15 + ... 
} (2.5) 

for the honeycomb lattice. These results yield a further 
6 independent constraints, leaving 7 counts to be pro-
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vided. In the direct procedure for obtaining L 10 by the 
method of Domb 12 constraints on the coeffiCients would 
result; 10 of these from the previous polynomials 
through L9 and 2 that arise from the requirement that 
the high temperature susceptibility and specific heat 
must expand correctly. The first 10 of these constraints 
are found to be linear combinations of the 45 constraints 
derived from the codes; the remaining 2 are linearly in
dependent and reduce the number of counts to be pro
vided to 5. 

We supply the five codes 

6(17,4,13) 

259(18,6,12) 

96(17,5,11,1) 

2376(18,7,10,1) 

-1029(19,9,9,1) 

(2.6) 

and complete F 10 by solving 53 linearly independent 
equations. On substitution, we obtain at the same time 
the polynomial (for the triangular lattice) 

L 10 = 3u11 + 86u12 + 432u13 + 837u14 + 449u15 

- 10 353u16 - 42 315u17 - 48 618iu18 

+ 205 386u19 + 663 28&20 + 1 680030u21 

- 4 347 964 ~u22 - 22 703 382u23 + 20 150 487u24 

+ 236013 50q u 25 - 741 600 94Hu26 

+ 1 012 339 456u27 - 745 686 690u28 

+ 290 732 760u29 - 47 346 449 ~ u 30 • (2.7) 

The above results have been obtained by sacrifiCing all 
the advantages of the powerful consistency check that 
follows from the prinCiple of complete code balance. 
To check that our data are correct we have overcounted; 
that is, we have counted further codes and coefficients 
in every case and verified that these are consistent with 
those obtained by solution of the simultaneous equations. 

We give the expressions for F 7 through F 10 in the 
Appendix, together with the honeycomb high-field poly
nomials derived therefrom. The corresponding sub
lattice polynomials to order 21 are of course also de
termined by the F. 

3. DERIVATION OF COMPLETE CODES 
FOR SIMPLE QUADRATIC LATTICE 

The simple quadratic code system is more complicated 
than the honeycomb-triangular system. The algebraic 
system is based on the most general possible code which 
is now 

(4n' - p - 2t - 3T, 4n - 2p - 3t - 4T,p, t, T), (3.1) 

where for the Shadow graph T is the number of tetra
hedra, t the number of triangles which do not lie in tet
rahedra, and p is the sum of twice the number of first 
and once the number of second neighbor bonds that do 
not lie in either. Again the codes that, in fact, occur are 
limited to the subset of graphical codes. 

Because of the greater complexity of the code system 
(63 graphical codes in F 7 in place of 27 for the honey
comb), we have found it convenient to provide most of 
the codes by direct counting. To do this we have used 
a computer program developed by one of us (CJE). The 
underlying problem is to enumerate, count, and code all 
graphs with seven vertices on the Simple quadratic lat-
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tice with first and second neighbors. It would be possi
ble to do the whole operation by computer; in practice 
it is more convenient to supply the contribution of many
component (separated) graphs by exploiting the principle 
of complete code balance. 

We give in the Appendix the value of F 7 and the poly
nomials L14 and L 15; these, together with the known par
tition function5 in zero-field, determine the first 16 
coefficients of the high temperature susceptibility ex
pansion and these are found to be in agreement with 
previous direct estimates.6 

In conjunction with the 17th coefficient of the suscepti
bility all the field derivatives are determined to order 
17 inclusive. (Likewise the results of Sec. 2 determine 
all the field derivatives of the honeycomb lattice to 
order 23, of the triangular lattice to order 12). These 
results will be published subsequently. 
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APPENDIX: COMPLETE CODES Fn AND HIGH-FIELD POLYNOMIALS L(u) 

Honeycomb lattice 

F 7 = 1(12,6,3,3) + 15(12,5,5,2) + 15(13,8,2,3) + 6(12,4,7,1) + 6(14,10,1,3) + 93(13,7,4,2) + 120(13,6,6,1) 

- 78(14,9,3,2) - 18(15,12,0,3) + 15(14,8,5,1) + 36(13,5,8) - 615(15,11,2,2) + 396(16,13, I, 2) 

- 3507(15,10,4,1) + 429(14,7,7) - 5536(15,9,6) + 2286(16,12,3,1) + 243(17,15,0,2) + 18789(17,14,2,1) 

+ 2379(16,11,5) + 94851(17,13,4) - 30981(18,16,1,1) + 13167(19,18,0,1) - 320643(18,15,3) 

+ 437997(19,17,2) - 275184(20,19,1) + 65 7l8~ (21, 21). 

F 8 = 6(13,4,7,2) + 3(13, 5,5,3) + 3(14,4, 10) + 48(14, 5, 8, 1) + 123(14, 6, 6, 2) + 57(14,7,4,3) + 3(14,8,2,4) 

+ 255(15,6,9) + 609(15,7,7,1) + 324(15,8,5,2) + 104(15,9,3,3) + 6(15,10,1,4) + 411(16,8,8) - 2691(16,9,6,1) 

_ 21671 (16,10,4,2) - 252(16,11,2,3) - 31143(17,10,7) - 19392(17,11,5,1) - 3117(17,12,3,2) - 267(17,13,1,3) 

+ 1014361 (18,12,6) + 62901(18, 13,4, 1) + 10122(18,14,2,2) + 240(18,15,0,3) + 320037(19,14,5) 

+ 68703(19,15,3,1) - 933(19,16, 1,2) - 2 311238~(20, 16,4) - 378705(20,17,2,1) - 4245(20,18,0,2) 

+ 5039827(21,18,3) + 403392(21,19,1,1) - 5324130(22,20,2) - 134802(22,21,0,1) + 2778678(23,22,1) 

- 574 205i (24, 24). 

F 9 = 3(14,4,7,3) + 1(15,3,12) + 6(15,4,10, 1) + 51(15,5,8,2) + 80(15,6,6,3) + 21(15,7,4,4) + 27(16,5,11) 

+ 384(16,6,9,1) + 774(16,7,7,2) + 444(16,8,5,3) + 80(16,9,3,4) + 3(16,10,1,5) + 1431(17,7,10) 

+ 2055(17,8,8, 1) - 628(17,9, 6, 2) - 426(17, 10,4,3) - 12(17, 11, 2,4) - 8 421~ (18, 9, 9) - 29502(18, 10, 7,1) 

_ 20097{18, 11, 5, 2) - 3911(18,12,3,3) - 126(18,13,1,4) - 131952(19,11,8) - 53354(19,12,6,1) 

+ 11 022(19,13,4,2) + 1311(19,14,2,3) - 27(19,15,0,4) + 950214(20,13,7) + 621735(20,14,5,1) 

+ 108376(20,15,3,2) + 5940(20,16,1,3) - 296232(21,15,6) - 492309(21,16,4,1) - 114300(21,17,2,2) 

_ 2 731~ (21, 18,0,3) - 12829824(22, 17, 5) - 2786429(22, 18, 3, 1) - 49833(22, 19, 1,2) + 45721839(23,19,4) 

+ 6391674(23,20,2,1) + 63267(23,21,0,2) - 73688570(24,21,3) - 5039937(24,22,1,1) + 63438876(25,23,2) 

+ 1386554(25,24,0, 1) - 28314 960(26,25, 1) + 5157 414~ (27,27). 

FlO = 1(15,3,9,3) + 45(16,5,8,3) + 42(16,6,6,4) + 3(16,7,4,5) + 6(17,4,13) + 96(17,5,11,1) + 489(17,6,9,2) 

+ 660(17,7,7,3) + 342(17,8,5,4) + 42(17,9,3,5) + 259(18,6,12) + 2376(18,7,10,1) + 38051 (18,8,8,2) 

+ 1679(18,9,6,3) + 246(18,10,4,4) + 45(18,11,2,5) + 1(18,12,0,6) + 6165(19,8,11) - 1 029{19, 9, 9,1) 

_ 22716(19,10,7,2) - 12822(19,11,5,3) - 1719(19,12,3,4) - 69(19,13,1,5) - 93903(20,10,10) 

_ 211 086(20,11,8,1) - 1154621 (20,12,6,2) - 23463(20,13,4,3) - 14321 (20,14,2,4) - 307582(21,12,9) 

+ 291018(21,13,7,1) + 373461(21,14,5,2) + 66768(21,15,3,3) + 1482(21,16,1,4) + 6 225154t (22, 14, 8) 

+ 4015188(22,15,6,1) + 564444(22,16,4,2) + 36846(22,17,2,3) + 846(22,18,0,4) - 16289049(23,16,7) 

_ 11272290(23,17,5,1) - 2054709(23,18,3,2) - 98271(23,19,1,3) - 44874801(24,18,6) 

_ 7836459(24,19,4,1) + 699171(24,20,2,2) + 27133(24,21,0,3) + 333890 820i(25, 20, 5) + 65891508(25,21,3,1) 

+ 1422126(25,22, 1,2) - 8029271771 (26, 22, 4) - 97877319(26,23,2, 1) - 866220(26,24,0,2) 

+ 1026671 572(27,24,3) + 61326234(27,25, 1, 1) - 745686690(28,26,2) - 14332116(28,27,0,1) 

+ 290732760(29,28,1) - 47346449;(30,30). 

L14 = 13i-z10 + 12931z12 + 10 239z14 - 29070Hz16 - 1106330~z18 + 51659 587~z20 - 485 686203z22 

+ 2 531186 544~Z24 - 8 650 567975~ Z26 + 20 696184189~z28 - 35683 078192z30 + 44 736 756298~ Z32 

_ 405044061281 z34 + 25838073 978z3 6 - 11 026 631 670z3 8 + 28274278661 z40 - 329 532 809~z42. 
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L 15 = 99z11 + 4 659z13 + 9 388z 15 - 1 045935z17 + 589 338z19 + 153554 339z 21 - 1800298 839z23 

+ 10943 966 655~z25 - 43143273 895t z27 + 119462312 907z29 - 241026687 060Z31 + 359986482 721z 33 

- 398673 658 651~z35 + 323656860 471z37 - 187344453 913z39 + 73256077 056z41 - 17351332 869z43 

+ 1880 893 529~z45. 

L16 = H z10 + 556~ z12 + 14 905~ z14 - 53 361iz16 - 3392 069z 18 + 15503 661z2o + 418763 238z 22 

- 6408 752413tz24 + 45 527194980z26 - 205702882 038z 28 + 652083122 787z 30 - 1516436 885 79~z32 

1069 

+ 2643388622 025z34 - 3480793 494422z3 6 + 3451237800 210z3 8 - 2539062 705 132~z40 + 1345061 569 354~ z42 

- 485307026293iz44 + 106803960223iz46 -10821360421-~z4S. 

L17 = 21z11 + 2631z 13 + 41309z 15 - 438 600Z17 - 9879 492z 19 + 91306 307z 21 + 992263 377z 23 - 21838264 746z 25 

+ 182569 837122z 27 - 941971969 341z 29 + 3391104621 762z 31 - 8985390852 061z 33 + 18000662937 195z35 

_ 27608021297 097z3 7 + 32496618829 231z39 - 29161173313 776z 41 + 19612241942 373z43 

- 9576892709 804z45 + 3207513868 233z47 - 659192238 825z49 + 62695 314181f7z51. 

L 18 = 178z12 + 10809z14 + 91150~z16 - 2171765{-z18 - 24921147z 2o + 408173802z 22 + 1712263896~z24 
- 70771816 570iz 26 + 706222874 728iz28 - 4156643653 890z 30 + 16895 223 554254~z32 - 50 556121845475~z34 

+ 115018 592 769 003t z3 6 - 202287903 687 066z3 8 + 276880427988 466i z40 - 294 576336 961 750~ z42 

+ 241383297055 546! z44 - 149496753984 936z46 + 67703117 221632z48 - 21157312980 391i z50 

+ 4078362 710 029~ z52 - 365492 690 504~z54. 

L 19 = 3z11 + 1122z 13 + 39217z15 + 103 503z17 - 8836 677z 19 - 47 879154z21 + 1583499 405z23 

-146126940z25 - 215505807132z27 + 2633706637839z29 -17714835415059z31 + 80983222780 567z33 

- 271 801 098256 650z3 5 + 695714339542 968z3 7 - 1386184993907 707z39 + 2171920169846 733z41 

- 2683391375444 535z43 + 2604051889539 049z 45 - 1963104873705 786z47 + 1126607002232 820z49 

- 475676123479 201z 51 + 139322037300 339z 53 - 25287455348 415z 55 + 2142512683 691fg z5 7. 

L 20 = 43i z12 + 5829z14 + 125 336tz16 - 398 467i z18 - 31663 835t z20 - 24213 138z22 + 5537628 616t z24 

- 20522547 531z26 - 602189 777 737~z28 + 9449 997 391664~ z30 - 73015594 477 080~z32 

+ 374633325 888 676~ z34 - 1403030743 989 103~z3 6 + 4010730984549 060z3 8 - 8966600 232 733150~ z40 

+ 15886 396461688 887~Z42 - 22436409 786964112tz44 + 25255816116533 859z46 - 22526577970085 309!z48 

+ 15722693103 596 614~z50 - 8405918707839 228z 52 + 3324082711885 887z 54 - 916112238 583162i z56 

+ 157101691401118~ z58 - 12621887453735* Z60. 

L21 = 387z13 + 26111z 15 + 341706z17 - 3777 609z19 - 101586109z21 + 390691 035z 23 + 17571739110z25 

- 132031662 57st z2 7 - 1462742482 599z 29 + 32493226019 064z 31 - 291212949840 308z33 

+ 1676525162 927 097~ z35 - 6979999379245 722z 3 7 + 22153962836 019194z39 - 55146611831987 088z41 

+ 109406 684141966184z43 - 174460339883 721134z45 + 224224576208023 365z47 - 231759900 926189 854~z49 

+ 191225786576790 611z 51 - 124246173735835 959z 53 + 62171 572759884 333z 55 - 23119019544235 833z 57 

+ 6016310713749 579z 59 - 977768139593 331z 61 + 74691 681980 346~ z63. 

Simple quadratic lattice 

F 7 = 16(14,5,6,1,2) + 6(14,6,4,2,2) + 4(15,5,7,3) + 8(15,5,8,1,1) + 64(15,6,6,2,1) + 8(15,6,7,0,2) 

+ 80(15,7,4,3,1) + 16(15,8.,2,4,1) + 2(16,4,12) + 20(16,5,10,1) + 108(16,6,8,2) + 8(16,6,9,0,1) 

+ 256(16,7,6,3) + 148(16,7,7,1,1) + 188(16,8,4,4) + 168(16,8,5,2,1) - 40(16,8,6,0,2) + 40(16,9,2,5) 

+ 28(16,9,3,3,1) + 40(17,6,11) + 340(17,7,9,1) + 1060(17,8,7,2) + 24(17,8,8,0,1) + 860(17,9,5,3) 

- 472(17,9,6,1,1) + 204(17,10,3,4) - 616(17,10,4,2,1) - 88(17,11,2,3,1) + 160(18,8,10) + 288(18,9,8,1) 

- 2040(18,10,6,2) - 536(18,10,7,0,1) - 2764(18,11,4,3) - 1368(18,11,5,1,1) - 584(18,12,2,4) 

- 1852(19,10,9) - 11 792(19, 11, 7,1) - 15608(19,12,5,2) + 360(19,12,6,0,1) - 2804(19,13,3,3) 

+ 2320(19,13,4,1,1) - 256(19,14,1,4) - 10016(20,12,8) - 8108(20,13,6,1) + 16810(20,14,4,2) 

+ 2848(20,14,5,0,1) + 4080(20,15,2,3) + 339(20,16,0,4) + 28072(21,14,7) + 99468(21,15,5,1) 

+ 31776(21,16,3,2) - 2992(21,16,4,0,1) + 112332(22,16,6) - 16820(22,17,4,1) - 29824(22,18,2,2) 
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- 212 788(23, 18, 5) - 206644(23,19,3,1) - 370616(24,20,4) + 140144(24,21,2,1) + 718328(25,22,3) 

+ 217696(26,24,2) - 800968(27,26,1) + 320 879~ (28, 28). 

Ll4 = 22u8 + 864u9 + 7372u10 + 11 536u11 - 257378u12 - 1557 816u13 + 1314 978u14 + 62452 942u15 

- 2072 348u16 - 1354656 284u17 - 785938 734u18 + 48542073 472u19 - 250471809 911 ~u20 

1070 

+ 700 726407966~u21 - 1278321358 994u22 + 1613014033 334u23 - 1429269896 596u24 + 877614310 184u25 

- 356891308190u26 + 86670538138u27 - 9532 294 55~u28. 

L 15 = 6u8 + 456u9 + 6404u10 + 2443&111 - 94 888u12 - 1677 728u 13 - 3997 457u14 + 34493 510j u15 

+ 267958 908u16 - 885175436u17 - 5903 060 870~u18 + 16408972 700u19 + 177977336 689! u20 

- 1 388708 571 629~ u21 + 4917742 574 549u22 - 10990712090 268u23 + 16983 610970872% u24 

- 18741 629 318 887~ u25 + 14825042097 211u2 6 - 8245969 418 426~ u2 7 + 3071337 551 762u28 

- 689136584016u29 + 70528002102~u30. 

1M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys. 
6, 283 (1965). 

2M. F. Sykes, D. S. Gaunt, J. W. Essam, and D. L. Hunter, J. 
Math. Phys. 14, 1060, (1973). 
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The derivation of series expansions appropriate for low temperatures or high applied magnetic fields 
for the two-dimensional Ising model of a ferromagnet and antiferromagnet is studied as a 
temperature grouping. New results are given for the ferromagnetic polynomials for the triangular 
lattice to order 16. for the ferromagnetic and antiferromagnetic polynomials for the simple quadratic 
lattice to order 11, and for the honeycomb lattice to order 16. 

1. INTRODUCTION AND SUMMARY 

In this paper we extend the series expansions of three 
two-dimensional lattices, the honeycomb, simple quad
ratic, and triangular, as a temperature oru-grouping. 
We refer to previous papers1- 3 as I, II and III respec
tively. As in 1lI, it is our main object to communicate 
the results; the techniques we have used are rather spe
cialised and are not, in general, applicable to three
dimensional lattices. 

We give new results for the ferromagnetic polynomials 
If/ll through If/16 on the triangular lattice, If/s through 
If/ll on the simple quadratic lattice, If/1 0 through If/16 on 
the honeycomb lattice. We also give the corresponding 
anti ferromagnetic polynomials If/a to the same order, 
and expansions for the ferromagnetic and antiferromag
netic susceptibilities X f and Xa. 

2. DERIVATION OF PARTIAL CODES FOR 
HONEYCOMB AND TRIANGULAR LATTICES 

When for the honeycomb lattice the double series ex
panSion in4 /.I and z is regrouped in powers of z, only a 
small part of the information in the higher codes is ex
ploited; this is because quite low powers of z can come 
from higher codes. For example we can complete If/11 
from the /.I-grouping derived from the first 9 codes 
since the highest power of JJ that occurs is 19. But, to 
complete If/12 requires contributions up to JJ24 and could 
therefore involve F12 • The codes that contribute are 
not numerous; in the present instance, a simple suffi
cient condition can be given for finding all the codes 
that might contribute. It follows from the star-triangle 
substitution II (4.7) whereby effectively 

u ~ z(l + z)/(l + z3) (2.1) 

that to obtain a given power of z it will suffice to en
code all those triangular configurations which contri
bute to the corresponding power of u (or less). Thus, 
on the triangular lattice 

If/12 = 2JJ12 + 241.111 + 861.110 + ..• (2.2) 

and by encoding all the graphs that contribute to these 
three leading terms, together with the leading term of 
If/l,we derive partial codesF12 (12),Fll (12),F10 (12) 

which contain sufficient information to derive If/12 on 
the honeycomb lattice correctly. We find 

F12 (12) = (18,6,6,6) + (19,9,3,7), 

Fll (12):::: 12(17,6,6,5) + 12(18,9,3, 6}, 
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F10(12) = 3(16,7,4,5) + (15,3,9,3) + 42(16,6,6,4) 

+ 42(17,9,3,5) + (18,12,0,6). (2.3) 

These partial codes are based on a sufficient condition; 
not all the above codes are necessary. In fact, for 
F 10 (12) the last two only contribute to z12 because their 
expansions contain X Sb 21 and X 6b 1S, respectively; these 
coefficients correspond to less than 20 overturned spins 
in all and, provided the sublattice symmetry is consis
tently exploited,S they will be correctly supplied by Fa 
and F6 , respectively. We can, therefore, write 

FlO (12) min = 3(16,7,4,5) + (15,3,9,3) 

+ 42(16, 6, 6, 4) 
and, similarly, 

F12 (12) min = (18,6,6,6), 

Fll (12) min = 12(17,6,6,5). 

(2.4) 

(2.5) 

An elaborate detailed theory can be developed for par
tial codes and the relationship between the ranks of a 
code and the topology of the associated configuration 
on the shadow lattice. In practice, for the present lat
tice pair, it is slightly more convenient to evaluate the 
If/ directly. 

3. TEMPERATURE GROUPING FOR HONEYCOMB 
AND TRIANGULAR LATTICES 

To extend the z-grouping on the honeycomb lattice 
directly, we require an enumeration of clusters of 
spins with constant Ising perimeter (the power of z); 
in particular, we need those clusters with near the 
maximum number of spins since the contribution of 
those with a small number are supplied by the com
plete codes. For example, the polynomiallf/16 for the 
honeycomb lattice has two extremes: (1) a maximum 
of 42 overturned spins with 55 nearest neighbor bondS 
between them, contributing 3JJ42, and (2) a minimum of 
6 overturned spins with one bond contributing 33631.16 • 
We illustrate the actual graphs: 

(1) 

....... ' 
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.... "1 

(2) (~/: 
: ~) 
L- .... 

We can interpret the graphs that contribute to 1/116 in 
another way by introducing the well-known duality pro
perty6 of the honeycomb triangular pair. The honey
comb polynomial 1/116 then corresponds on the triangular 
lattice to all the no-field graphs with 16 edges grouped 
by area (in unit triangles), each unit of area contribut
ing one power of Jj. To derive the polynomial we re
quire an area classification of all such graphs. By 
reference to the figure it will be seen that the graph 
of highest area corresponds to a polygon of 16 Sides, 
the graph of lowest area to five polygons with a total 
of 16 sides. Closer inspection reveals that all the 
graphs on the honeycomb lattice that contribute to Jj30 
or more correspond to polygons. An analysis of all the 
polygons on the triangular lattice by area is given by 
Hiley and Sykes7 up to 16 Sides. In terms of a dummy 
variable x the 1930635 polygons with 16 Sides divide as 

3x42 + 27x40 + 147x 38 + 609x 36 + 2079x 34 + 6156x 32 

+ 16017x 3o + 37086x28 + 7704Ox26 + 142737x 24 

+ 235662x22 + 341796x20 + 419913x18 + 40660&16 

+ 244755x14. (3.1) 

The leading terms of this analysis are isomorphic with 
21/116 on the honeycomb lattice; it suffices to replace x 
by Jj. For areas of 28 and less more than one polygon 
can occur and corrections must be made; with the aid of 
the (unpublished) details of the 1961 calculation we have 
carried out these corrections down to the coefficient in 
/-1 22 to obtain 

21/116 = 3Jj42 + 27/-140 + 147Jj38 + 609Jj36 + 2079/-134 

+ 6156Jj32 + 16017Jj30 + 36846Jj28 + 75462Jj26 

+ 134817/-124 + 205650/-122 + .... (3.2) 

The polynomial can now be completed by taking the 
coefficients of /-118 down to /-16 from the expansion of the 
complete codes Fo through F9 derived in III and deter
mining the coefficient of ,.,.20 from the known value of 
1/116(1) derived from the exact expansion8 for the case 
H = O. That the resultant polynomial is correct may be 
verified by using the expansion for the magnetization; 
if this check is dispensed with, the coefficient of ,.,.22 
can be supplied by elimination. The coefficient of ,,20 
found in this way follows also from the expansion of 
FlO' but we have instead found it convenient to use this 
coefficient in the derivation of the complete FlO' 

The calculation of the 1/1 for the triangular lattice pro
ceeds in an essentially similar way. The leading terms 
correspond to polygons on the honeycomb lattice; by 
exploiting the contributions from the triangular poly
nomials L 1 - L 1 0 and the known expansions of the par
tition function and magnetization we have derived the 
corresponding polynomials to 1/116' (The polygon-area 
distribution was not given in Ref. 7). 

In the case of the honeycomb lattice, it is not especi
ally important to obtain all the higher order partial 
codes, because extra coefficients are more easily 
obtained by direct counting on the lattice itself. A sys
tematic theory can be developed based on the brief 
observations we have made. The disadvantage of the 
direct method is that it does not give the detailed sub
lattice distribution without further intricate work. In 
the present instance, we obtain the antiferromagnetic 
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polynomials by first deriving the antiferromagnetic 
susceptibility by way of the magnetic moment result. 
We give the ferromagnetiC polynomials 1/1 for the tri
angular and honeycomb lattices in the Appendix; from 
these we derive the corresponding ferromagnetiC sus
ceptibilities as 

x? = 4u3 + 48u5 + 16uS + 516u7 + 288u 8 + 5328u 9 

+ 3840u 10 + 53676u11 + 45488u 12 + 531600u 13 

+ 505584u14 + 5199404u 15 + 5399136u 16 + ... , 
(3.3) 

'&c = 4z3 + 24z4 + 108z 5 + 488z 6 + 2064z 7 + 8592z 8 

+ 35168z 9 + 142488z10 + 572316z11 

+ 2283320z12 + 9058596z13 + 35769744z 14 

+ 140 678464z15 + 551357232z 16 + ... , (3.4) 

and from these by II (4.22), 

xi-c = 4y3 + 12y5 + 8y6 + 48y7 + 96y8 + 320y9 

+ 888y 10 + 2748y 11 + 8384y 12 + 26 340y 13 

+ 83568y14 + 268864y 15 + 873648y 16 + .... 
(3.5) 

We give the ferromagnetiC susceptibilities in full as 
they are not given in I. From the expansion (3.5) and a 
study of the contributions of some special codes, it is 
now possible to calculate three new antiferromagnetic 
polynomials in the presence of a field. By solving the 
resultant Simultaneous equations, these are found to be 

2l/If4 = 13890 + 47798a + 11104' 

21/i~ = 31558°1 + 3917°3 + 16t05, 

21/1f6 = 118857t + 46635°2 + 199204' 

4. TEMPERATURE GROUPING FOR SIMPLE 
QUADRATIC LATTICE 

For the simple quadratic lattice each complete code 

(3.6) 

F,. corresponds to an analysis of all the possible con
tacts of n squares. As before, rearrangement as a tem
perature grouping only uses a part of the last few com
plete codes available. The general code (~,O/,{:J,y, 6) 
contains 5 parameters and we have shown (II, Sec. 4) 
that in zero-field the general substitution reduces to 

(~,0/,tl,y,6) = [z(l + z2)/(1 + z4)]a+Y[2z2/(1 + z4)]B. 
(4.1) 

We deduce that the lowest power of z that derives from 
any particular code is 

0/ + 2{:J + 'Y = 4n - 2(y + 26). (4.2) 

For the z grouping the codes required at any fixed 
power of z could be characterised by their having their 
maximum possible values of 'Y + 26, which we have de
fined as the class of the code (II, Sec. 2), large enough 
to yield the chosen power, or less, through (4.2). The 
condition is suffiCient but not necessary. In general, 
every configuration on the simple quadratic lattice is 
accounted for in the direct expansion of Fn by two con
tributions; one corresponds to fixed spins on the A sub
lattice, the other to fixed spins on the B sublatticll. The 
corresponding codes we call conjugate with respect to 
the graph generated. If both conjugate codes are of the 
same order the above condition is necessary; if the con
jugate codes are of different order then the condition is 
necessary only for the code of lower order. 
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For example, there are found to be only two 8th order 
codes which could contribute to z20 and, therefore, by 
(4.2) must have y + 215 = 6. They are 

(18,10,4,2,2), 

(19,12,2,4,1), 

but in fact the first code is its own conjugate while the 
second has a 7th order conjugate 

(15,8,2,4,1), 

which will provide the total contribution if the sublat
tice symmetry is exploited. 

Again, we have found it convenient to extend the ferro
magnetic polynomials by the method of the previous 
section. The simple quadratic lattice is self-dual and 
an analysis by area of the polygons up to 18 sides is 
given by Hiley and Sykes; we have extended the relevant 
part of this analysis to 20 and 22 sides and derived the 
polynomials 1/18,1/19,1/110,1/111 by applying the necessary 
corrections. We have verified that these polynomials 
are consistent with the known values 9 of InA and the 
magnetization in zero-field. Since no useful relation 
has been found between the ferromagnetic and anti
ferromagnetic susceptibility, we have derived the cor
responding antiferromagnetic polynomials by direct 
enumeration; as a check we have employed the partial 

APPENDIX. FERROMAGNETIC POLYNOMIALS IjJ (~.d 

Honeycomb lattice 

1/13 = IJ., 1/14 = 1~1J.2, 1/15 = 31J.3, 

1/16 = iIJ.6 + 71J.4 - 21J.2, 1/17 = 31J.7 + 181J.5 - 91J.3, 

1/18 = 1~1J.10 + 13iIJ.8 + 46~1J.6 - 33t1J.4, 

1/19 = 1J.13 + 121J.11 + 551J.9 + 1161J.7 - 1211J.5 + 6t1L3 , 

codes. The values of 1/If through 1/I!f were given in I; 
for the next two, we find 

21/1fo = - 23316 + 25704°1 - 8556°2 + 2929°3 
- 25204 + 7t05 

21/If1 ::: 150572 - 8806001 + 5863282 - 1285683 
+ 2400°4 - 10085 

1073 

(4.3) 

and these provide two further coefficients for the anti
ferromagnetic susceptibility XQ given in I: 

... + 55956w 10 + 266656w 11 , (w =y2). 

From the ferromagnetic polynomials we extract the 
ferromagnetic susceptibility as 

Xl = 4u 2 + 32u 3 + 240u 4 + 1664u 5 + 11164u6 

+ 73184u 7 + 472064u 8 + 30080321J.9 

+ 18985364u1o + 118909888u 11 • 

(4.4) 

(4.5) 

We give the ferromagnetic polynomials in the Appendix. 
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1/110 = HIJ.16 + 13~1L14 + 67~1J.12 + 199~1L10 + 270IL8 - 421tIJ.6 + 511L4, 

1/111 = 31J.19 + 211L17 + 991J.15 + 3181J.13 + 6541J.11 + 5341L9 - 1 4221L 7 + 2881L5, 

1/112 = tIL24 + 71L22 + 43tIL20 + 1781L18 + 556tIL16 + 1293tIL14 + 1938tIL12 + 639tIL10 - 4640tIL8 + 1400tIL6 - 2H1L4, 

1/113 = 31J.27 + 211J.25 + 1051J.23 + 3871J.21 + 11221J.19 + 2 6311J.17 + 4 6591J.15 + 50131J.13 -12751J.11 - 14 5831J.9 

+ 62251J.7 - 2911J.5, 

1/114 = Itl'32 + 13iIJ.30 + 73~1J.28 + 292iIJ.26 + 95Sil'24 + 2593tl'22 + 5829jJ.20 + 10809,,18 + 14905tjJ.16 + 10 239jJ.14 

-138661L12 - 437401J.10 + 25938jJ.8 - 2212ijJ.6, 

1/115 = 1J.37 + 121J.35 + 641J.33 + 2691J.31 + 9181J.29 + 26451J.27 + 66301J.25 + 142641L23 + 261111J.21 + 392171J.19 

+ 413091J.17 + 93881J.15 - 70 9891J.13 - 1234661J.1l + 1026591J.9 -136471J.7 + 106t1J.5, 

1/116 = 1~1J.42 + 13iIJ.40 + 73tIJ.38 + 304tIJ.36 + 1039t1J.34 + 30781J.32 + 800SijJ.30 + 184231J.28 + 37 7311J.26 + 6740SiIJ.24 

+ 1028251J.22 + 125336tIJ.20 + 91150~1L18 - 5336itIL16 - 290701~1J.14 - 319373tIL12 + 388501tIL1o + 74083iIJ.8 

+ 1681i1J.6. 

Triangular lattice 

1/13 = IJ., 1/14 = 0, 1/15 = 31L2, 

1/16 = 2jJ.3 - 3ij.l2, 1/17 = 31J.4 + 91J.3, 
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1jI9 = /Jo7 + 14/Jo6 + 21/Jo5 + 5/Jo4 + 19i/Jo3, 

1jI10 = 6/Jo8 + 30/Jo7 + 42/Jo6 + 18/Jo5 - 178!/Jo4, 

1jIll = 3/JolO + 27/Jo9 + 69/Jo8 + 105/Jo7 + 33/-t6 -177/-t5 + 288/-t4, 

1jI12 = 2/Jo12 + 24/Joll + 86/JolO + 160/Jo9 + 227/Jo8 + 24/Jo7 - 278/Jo6 - 680/Jo5 - 129t/-t4, 

1jI13 = 3/-t14 + 27/-t13 + 117/Jo12 + 249/Joll + 432/-tlO + 483/Jo9 + 120/Jo8 - 564/Jo7 -1320/Jo6 + 2637/Jo5, 

1jI14 = 6/-t16 + 42/Jo15 + 168/Jo14 + 414/Jo13 + 702/Jo12 + 1092/Joll + 837/Jol0 + 228/-t9 - 1822t/-t8 - 2 682/Jo7 - 136!/Jo6 

- 2796J.15, 

1jI15 = /-t19 + 14/Jo18 + 87/-t17 + 290/Jo16 + 729/Jo15 + 1320/Jo14 + 2072/Jo13 + 2 539/Jo12 + 1726/Joll + 449/JolO - 4181/Jo9 

- 5313/Jo8 - 3007/-t7 + 16807/Jo6 + 971t/Jo5, 

1074 

1jI16 = 6/Jo2l + 42/Jo20 + 198/Jo19 + 606/Jo18 + 1 368/-t17 + 2 622/Jo16 + 4 044/-t15 + 5553/Jo14 + 5142/Jo13 + 3 567/Jo12 - 1 734/Joll 

- 10 353/JolO - 16 704/Jo9 - 8859/-t8 + 21168/Jo7 - 34920/Jo6. 

Simple quadratic lattice 

1jI2 = /Jo, 1jI3 = 2/-t2, 1jI4 = /-t4 + 6/-t3 - 2t/-t2, 

1jI5 = 2/Jo6 + 8/Jo5 + 18/Jo4 - 16/Jo3, 

1jI6 = /Jo9 + 6/Jo8 + 22/Jo7 + 40/-t6 + 43/Jo5 - 85/Jo4 + 10i/Jo3, 

1jI7 = 2/-t12 + 8/-tll + 30/JolO + 72/-t9 + 134/Jo8 + 136/Jo7 + 30/Jo6 - 400/Jo5 + 118/Jo4, 

1jI8 = /Jo16 + 6/Jo15 + 22/-t14 + 68/Jo13 + 151/Jo12 + 310/-tll + 461/JolO + 540/Jo9 + 194!/Jo8 - 486/Jo7 - 1651/Jo6 + 926/Jo5 - 52i/Jo4, 

1jI9 = 2/Jo20 + 8/-t19 + 30/Jo18 + 88/Jo17 + 218/-t16 + 456/Jo15 + 864/Jo14 + 1340/Jo13 + 1894/-t12 + 1864/Joll + 1144/JolO 

- 1420/-t9 - 3 986/-t8 - 5 664/Jo 7 + 5992t/Jo6 - 872/-t5, 

1jI10 = /-t25 + 6J.124 + 22/Jo23 + 68/-t22 + 187/Jo2l + 426/Jo20 + 914/Jo19 + 1728/Jo18 + 2978/Jo17 + 4 566/-t16 + 6404/Jo15 

+ 7372/-t14 + 7389/-t13 + 3 315/-t12 - 3 373/Jol1 - 15 480/JolO - 19 786/Jo9 - 13 323/Jo8 + 33 609/Jo7 - 9144/Jo6 + 295t/Jo5, 

1jIll = 2/Jo30 + 8/Jo29 + 30/Jo28 + 88/-t27 + 238/Jo26 + 560/Jo25 + 1208/-t24 + 2408/Jo23 + 4472/-t22 + 7 572/-t2l + 12168/Jo20 

+ 17 716/Jo19 + 23 910/Jo18 + 28 744/-tl 7 + 30 892/-t16 + 24 436/Jo15 + 11 536/Jo14 - 20 332/Jo13 - 53 428/Jo12 - 91 688/Joll 

- 66020/JolO + 5112/Jo9 + 164790/-t8 - 75640/Jo7 + 6520/Jo6. 

1M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys. 
6, 283 (1965). 

2M. F. Sykes, D. S. Gaunt, J. W. Essam, and D. L. Hunter, J. 
Math. Phys. 14, 1060 (1973) 

3M. F. Sykes, D. S. Gaunt, S. R. Mattingly, J. W. Essam, C. J. 
Elliott, J. Math. Phys. 14, 1066 (1973). 

'We follow II, Sec. 4 and use u for the triangular lattice variable, 
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and z for the honeycomb lattice variable, in their usual sense. 
S As detailed in II, Sec. 2. 
6G. H. Wannier, Rev. Mod. Phys. 17, 50 (1945). 
7B. J. Hiley and M. F. Sykes J. Chern. Phys. 34, 1531 (1961). We 

have corrected a small error in the coefficient of x 26. 
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The density of a nonuniform system in the 
thermodynamic limit 

Carver S. Simmons and Claude Garrod 
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We discuss the existence. continuity. and other properties of the canonical and grand canonical 
density distributions in the thermodynamic limit for nonuniform classical mechanical systems. For 
an external potential </> defined on a domain A the free energy per unit volume for fixed temperature 
is given by F(po.</» = min f A[P(X )</>(x) + f(p(x »]d x / V(A) where the minimum is over all density 
distributions satisfying the restriction of fixed average density Po. and f(Po,/3) is the free energy per 
unit volume in the thermodynamic limit when </> = o. We prove that if </> is not constant over any 
region of finite volume then the density distribution which minimizes is unique. and also that the 
density is the functional derivative of F(po.</» with respect to </>. We also show that the density 
distribution of an infinite nonuniform system is the limit of density distributions associated with 
finite systems of increasing size. 

1. INTRODUCTION 

Recently a number of authors have treated the problem 
of definition and existence of the thermodynamic limit 
for a classical system of interacting particles influenced 
by an external potential.1 •2 •3 •4 For such a nonuniform 
system, the free energy and average pressure in the 
thermodynamic limit are determined by an extremum 
problem defined over all possible macroscopic den-
sity distributions. In this paper we shall be concerned 
with demonstrating that the macroscopic density dis
tribution which solves the extremum problem is the 
limit of the density distribution sequence obtained from 
the partition functions associated with finite systems 
of increasing size. Further, we shall show that those 
situations in which the macroscopic density distribu
tion solving the extremum problem is not unique are 
associated with thermodynamic phase transitions. 

2. CANONICAL DENSITY DISTRIBUTION 

We shall consider a classical system of n particles 
with Hamiltonian of the form 

where 
n 

Wn(x1,··· ,xn) = ~ cp(x i ) + Un(x1,.·· ,xn)· 
i~l 

(2.1) 

(2.2) 

The interaction potential U",(x1, •.• ,x",) is translation
ally invariant and defined for Xi E RK (K-dimensional 
Euclidean space). The external potential cp is defined 
on A which is a bounded subset of RK. We shall con
sider a sequence of external potentials {(A, cp)} obtained 
from an initial pair (Ao, cpo) by 

cp(X) = cpo(x/a) and A = aAo 

for a = (n/no) 1/ K, n ~ no' 

The free energy per unit volume is 

-{3ff(A, n, (3, cp) = V(A)-l In Z(A, n, (3, cp), 

where 

(2.3) 

(2.4) 

1 r r -SH 
Z(A,n,{3,cp) =n! JR",K JAn e n dP1'''dPndx1'''dxn 

(2.5) 
is the canonical partition function for the nonuniform 
system (2.1). For each n ~ no, the canonical density 
distribution is given by 
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Pn(X) = (n -= 1)! ~n-1 e -SWnVC.X2···· .x"'~X2·· 'dx",/ 

Q(A,n,{3,cp), (2.6) 

where Q(A,n, (3, cp) is the configurational partition func
tion of (2.2). The denSity distributions (2.6) satisfy the 
normalization 

(2.7) 

where noV(Ao)-l = Po' 

We can obtain the densities (2.6) from the free energy 
(2.4) by means of a functional derivative with respect 
to the external potential. Let {(A, ltt)} be defined from an 
initial pair (Ao,ltt o) as in (2.3). For convenience, let 

q(t) = Q(A,n, (3, cp + tltt), (2.8) 

where t is a real parameter. The external potentials cp 
and ltt are bounded measurable functions so that we have 
for the derivative with respect to t 

P. r '" -BW Vc ••. " ) 
q'(O)=-n~. J.n ~ltt(xi)e '" l' • "'dx1"·dx. 

•• i~ '" 

Now 

-(3 ~ ff(A,n,{3,cp + tltt) = V(A)-lq'(t)/q(t) 

and (2.9) give that 

(2.9) 

(2.10) 

~ ff(A,n,{3,cp + tltt)lt~ = V(A)-l k ltt(x)p",(x)dx. 
(2.11) 

In terms of definitions which will be given in Sec.4,the 
denSity (2.6) is the Gateaux gradient of ff at cpo The 
mapping associating Pn with cp is called a gradient map
ping. Interesting results related to gradient mapping 
are to be found in the references. 

We can study the convergence of {Pn} by its behavior on 
the reference domain Ao' Define 

(2.12) 

for y E Ao' Then 

V(A)-l fA ltt(x)p,.(x)dx = V(Ao)-l fA ltto(Y)Po.n(y)dy. 
o (2.13) 

Copyright © 1973 by the American Institute of Physics 1075 
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Now if the sequence {Po n} is weakly convergent for 
every essentially bounded measurable function 1/10' then 
the weak limit provides a macroscopic density in the 
thermodynamic limit. We shall demonstrate in Sec. 7 
that density distributions related to the thermodynamic 
limit of the free energy (2.4) provide the limits of the 
canonical density distributions (2.6). The objective of 
this paper is to show that the thermodynamic limit opera
tion and differentiation with respect to the external po
tential can be interchanged. A similar program to find 
the correlation functions of a uniform system in the 
thermodynamic limit has been carried out by Fisher.5 

Fir st we must consider the density distributions associ
ated with the thermodynamic limit operation. 

3. THERMODYNAMIC LIMIT 

It has previously been shown that the thermodynamic 
limit for a nonuniform system can be defined and that 
a limit exists which describes macroscopic systems. 
H 3'(A, n, (3, CP) is the sequence of free energy per unit 
volume, then we have that 

(3.1) 

when nV(A)-l ~ Po for O:s Po < Pcp where F 0 is the free 
energy per volume of a macroscopic system. The free 
energy per volume is defined by 

Fo(po,CP) =inf{(p,Cp) +F(p)llIpIl1 = Po}' (3.2) 

where 

(p , CP) = J;. p(x)CP(x)dll(x) 
and 

F( p ) = J;. f( p(x»dll(x) 

(3.3) 

(3.4) 

with dll(x) = dx/V(A) the normalized Lebesque measure 
on the domain A (A is a compact subset of K-dimension
al Euclidean space and has a connected interior). The 
density p(x) and external potential If>(x) are elements of 
the real Banach space of functions bounded and measur
able with supremum norm II-II. The function f which 
defines the functional (3.4) is the free energy per volume 
obtained from the uniform thermodynamic limit, and it 
is a continuous convex function on the interval [O,Pcp)' 
We shall assume that f is lower semi -continuous on the 
closed interval [O,pcp]' Further,the free energy func
tion f used in this paper will include the contribution 
due to momentum. The result expressed by (3.1) 
is valid if the external potential is a step potential 
of the form 

y 

Cpy(x) = L; atxA . 
t=l • 

(3.5) 

for {A i}r=l a disjoint partition of A or if cP is the uniform 
limit of step potentials (3.5).6 

An important problem related to the existence of the 
thermodynamic limit for nonuniform systems depends 
on the demonstration that a density distribution which 
solves the minimization problem posed in (3.2) is 
actually the density of a macroscopic nonuniform sys
tem. The existence and uniqueness of densities which 
solve the minimization problem (3.2) will then be re
lated to the phase transitions of a system influenced by 
external forces. 

We begin with a demonstration that a density distribu
tion which solves (3.2) for some continuous potential If> 
is related to the sequences of step potentials which 
approximate cp. 
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We let L denote the real Banach space of bounded 
measurable functions on A with supremum norm II-II. 
We shall also use the real Banach space L 1(A) with 
norm II-Ill and the Banach space LOCj(A) of essentially 
bounded functions. The infimum of \3.2) can be taken 
over all p E L1 (A) [notice that L is dense in L1 (A)]. 

Now let cp y ~ cp uniformly on A. A step denSity distribu
tion p .. defined over the same disjoint partition {Ajh~l 
which defines cp y is of the form 

y 

Py(x) = ~ 7JjXAj 
(3.6) 

for real numbers 7Jj. It was shown that there exists a 
sequence of step densities {I',.} where 

{P,.} c {p E LI p?: 0, Ilpll < Pcp' IIpl11 = po} (3.7) 

such that 

(3.8) 

for all r, and 

(3.9) 

The existence of {I',.} followed from the fact that the 
minimization problem (3. 2) reduces to a lower semi
continuous function on a compact subset of r-dimension
al Euclidean space for each CPy' We extend the defini
tion of the convex functional (3.4) by settingf(7J) = +<Xl 
if 7J < O. Observe that f now defined on (-<Xl, <Xl) remains 
a lower semicontinuous convex function. This defines 
(3.4) on all of L 1(A) with an effective domain 

dom F = {p E L 1(A) I F(p) < + <Xl} (3.10) 

(write f as the limit of a monotonic increasing sequence 
of functions continuous on [0, <Xl] and apply Lebesque' s 
monotone convergence theorem). The range of F is 
contained in (-<Xl, + <Xl ]. 

It has been suggested that the minimizing sequence 
{p ... } may be found by application of the usual Lagrange 
multiplier technique. 7 However, this method fails to be 
general enough since the required derivative of the con
veX function f(7J) may not exist at a countable set of 
points. While it has been shown that 'Of /a7J exists and is 
continuous for the case of pair interactions which in
clude a hard core, the question of whether af/a7J exists 
for more general interactions in continuous systems is 
not completely answered.s We shall give a method for 
determining {p ... } which does not require that the above 
derivative exist everywhere. H the graph of f(7J) con
tains linear segments then the minimizing density is not 
a unique function for certain external potentials. 

Our next section applies some new methods of convex 
analysis developed by R. T. Rockafellar. See references 
for a complete list of further references to convex 
analysis. 

4. A LAGRANGE MULTIPLIER METHOD 

We begin with some definitions required for the sub
sequent discussion. Let E be a locally convex H:l;usdorff 
topological vector space over the real numbers. The 
Banach spaces L, L (A), and Ll.(A) with which we shall 
be concerned are e;'amples of E. E*, the dual of E, is 
the set of all continuous linear functionals defined on E. 
H E is a Banach space then E* can be organized as a 
Banach space in the usual way.9 Let F be a proper con-
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vex function defined on E with range in the real numbers. 
A subgradient of F at a point u E E is a u* E E* such 
that 

F(w) 2:: F(u) + u*(w - u) (4.1) 

holds for all wEE. 

The set of subgradients of F at u is denoted by of(u). 
The function F is said to be Gateaux differentiable at 
u E E if there exists a u* E E* such that 

d 
dt F(u + tw) I t"o == u*(w) (4.2) 

for all WEE. The unique u* satisfying (4.2) is denoted 
by VF(u) and is called the Gateaux gradient of F at u. 
The Gateaux gradient and subgradient are related in 
that if F has a gradient VF(u) , then ClF(u) is the single
ton set {VF(u)}. Let F be a proper convex function on E. 
The conjugate of F is defined by 

F*(u*) == sup {u*(u) - F(u) I u E E} (4.3) 

for each u* E E*. The conjugate F* is again a convex 
function defined on E* organized in the usual way as a 
vector space over R. From the definitions (4.1) and 
(4.3) we obtain the relationships 

u* E of{u) if and only if F{u) + F*(u*) = u*(u) 

(4.4) 
and 

u E ClF*{u*) if and only if F**(u) + F*(u*) == u*(u), 

(4.5) 
where the second conjugate F** is defined by 

F**(u) = sup {u*(u) - F*(u*) I u* E E*}, (4.6) 

and the set ClF*(u*) of subgradients of F* at u* E E* is 
defined by 

F*{w*) 2: F*(u*) + (w* - u*)(u) 

holding for all w* E E*. 

(4.7) 

Now let E* also be a locally convex Hausdorff topolo
gical vector space over the reals and let E** be the 
dual. The space E is reflexive if every u** E E** is 
of the form 

u**(u*) == u*(u) (4.8) 

for some u E E. If E is reflexive, then E and E* are 
duals of each other. If E*, the dual space of E, can be 
given a locally convex Hausdorff topology so that E be
comes the dual space of E* according to (4. 8), then the 
topologies of E and E* are admissible to the theory of 
conjugate convex functions. For the application we 
consider, the Banach space L1 (A) as E and L (A) as E* 
are duals if each has the weak topology induced on it 
by the other under the bilinear form 

(u, u*) = f" u{x)u*(x)dll{x) (4.9) 

for u E Ll(A), u* E L (A).10 We can also allow Ll(A) 
to have its 11·11" topology so that L (A) is its dual, and 
let Loo(A) have the weak* topology ~o that L1 (A) is its 
dual. ll Let E be admissible then we have the following 
remarkable theorem. 12 

Thearem 4. 1: If F is a lower semicontinuous proper 
convex function on E, then 

F**{u) == F(u) for all u E E. (4.10) 

J. Math. Phys., Vol. 14, No.8, August 1973 

1071 

This theorem is also an if and only if statement in that 
if (4.10) holds, then the proper convex function F is 
lower semicontinuous in the topology which makes E 
admissible. Further, the conjugate F* is always lower 
semicontinuous in the topology of E* even if F is not 
lower semicontinuous. 

Rockafellar has derived the following Lagrange multi
plier method.13 Suppose we Wish to minimize the pro
per convex function h{u) subject to the constraints 

wt(u) - C,_2: 0, c j E R{i == 1, .•. ,K). (4.11) 

Then this problem is the same as minimizing h + g on 
E where g is 0 at all solutions of (4.11) and +00 else
where. Let h be finite and continuous at some solution 
of (4.11). Then h attains its minimum subject to (4.11) 
at a if and only if -u* E Clh(ii) for some u* E Clg(u). Now 
u* E og(u) if and only if the linear functional u* attains 
its maximum on (4.11) at U. These statements are 
equivalent to the existence of real number s .\ l' •.. ,.\ K 

and a u satisfying 

.\,2: 0, wt(u) - c i 2: 0, .\i[wf(u) - cd == 0, 
and 

u* ==-('\lW! + "'+'\gWk)' (4.12) 

The above method can be applied to solving (3.2) by 
letting 

h{p) == (p, 4» + F(p) (4.13) 

and replacing the restriction lip 111 = Po by the pair of 
inequalities 

( p, I) - Po 2 0 and ( p, - I) + Po 2: 0 (4.14) 

where I == Xi\' Since F{ p) is continuous in the interior 
of its effective domain with respect to the supremum 
norm, we let pEL. The Banach space L is not reflex
ive in its supremum norm, but this property is not 
needed here. Notice that every 4> E L1 (A) provides a 
continuous linear functional 4>* E L* defined by 

4>*(p) == (p, 4» on L. (4.15) 

However,not every 4>* E L* is of the form (4.15). This 
means that L1 (A) is identified' with a subspace of L*. 
From (4.11) and (4.12) we find that h{p) takes a mini
mum at pEL with II P 111 == Po if and only if there exists 
a real number .\ such that 

.\[II'P 111 - po] = ° and .\I* E ah(p) (4.16) 

where 1* = (. ,I). Rockafellar has shown that if F1 and 
F 2 are proper convex functions on E such that there 
exists a point where both functions are continuous then 
for all u E E 

( 4.17) 

Since V4>*{p) exists for (4.15) and equals 4>*, we have 
that the second part of (4.16) becomes 

.\1* E Clh{p) = 4>* + ClF{P). (4.18) 

Proposition 4.1: Suppose that .\ and pEL satisfy 
(4.16). Further, suppose that the Gateaux gradient 
VF(p) exists and has the form (., VF(p» on L. Then the 
problem (3. 2) is solved by j5 where p satisfies 

v == 4> + VF(P) (4.19) 

almost everywhere on A. 
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It is to be expected that if i5 equals the points in [0, P~ 
at which the derivative /'(7J) does not exist only on a 
subset of A with measure zero then 

VF(P) =/'(p). (4.20) 

When </> is a step potential (3.5), then the minimization 
problem (3.2) can be solved in the finite dimensional 
space E = Rr. For this case E* = R" and there is no 
difficulty with the representation of subgradients of F 
since they .are elements of RY. It is tempting to consider 
(4. 18) for pEE = L 1 (A) since then every continuous 
linear functional on E is representable by an element of 
Loo(A),Le.,E* = Loo(A). However, some of the most im
portant F are not continuous in their domain as a subset 
of L 1(A). The continuity required in (4.16) and (4.17) 
would not be obtained. To demonstrate an F discontinu-
0us in the 1/-11 1 topology let Pcp < + 00 for I where 

(4.21) 

Consider dom F as a subset of L 1 (A). Now P E dom F 
cannot be an interior point for the II-Ill topology, and F 
cannot be continuous in this topology. If Pc = +00, then 
the convex function 1(7J) continuous on [0, oo~ satisfies 

K 
1(7J) ~ 7J[ln7J -1- (3B + 2"ln«(3/2mn)]/{l (4.22) 

with B from the stability property. 

Again the functional F is not bounded in any L1 (A) neigh
borhood, however small. Now if the convex function I is 
bounded on [O,Pc~ for Pc finite then F satisfies a Lip
schitz condition on its effective domain as a subset of 
L1 (A) and so F is continuous in this case. 

Although different I as defined above seem to yield func
tionals F with different properties when defined on L1 (A), 
they do have the following common property. 

Thearem 4.2: The proper convex functional F(p) de
fined on Ll (A) is lower semicontinuous on its convex 
effective domain. The proof of Theorem 4.2 is obtained 
as a consequence of Theorem 5.1 which was proven by 
Rockafellar. A direct proof can be obtained by using the 
fact that I satisfies a Lipschitz condition over every 
closed interval contained in [O,pcp)' Observe that The
orem 4.2 also shows that F is lower semicontinuous on 
L (A). Just apply the norm II-Ill to L (A) as a sub
sP'ke of L1 (A) and use II p - p' 111 ~ II p - p' 1100 for v(A) 
= 1. Applying convexity along with semi continuity , we 
have that 

lim inf F(p') = F(p) (4.23) 
p''''P 

for p',p E dom F, where convergence of p' to p can be 
in L 1 (A) or L (A). The application of (4.22) is immedi
ate since F(p) + (p, </» is also lower semicontinuous on 
dom F and therefore will take its minimum on compact 
subsets of dom F. Since compactness and sequential 
compactness are equivalent concepts in metric spaces, 
the limit in dom F of any convergent subsequence of 
{p } defined by (3.8) provides a density distribution 
whlch solves (3.2). Note that the set lip 111 = Po is not 
compact in L1 (A) so that we cannot apply lower semi
continuity directly here. 

In the next section with the use of a theorem by R. T. 
Rockafellar we shall see that F is also lower semi
continuous in the weak topology of Ll,(A) and lower semi
continuous intheweak* topology of L tAl. First we shall 
give a description of some of the SUbgradients of F re-
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quired in solving the Lagrange multiplier characteriza
tion of (3.2). 

5. SUBGRADIENTS AND EQUIVALENCE 
OF ENSEMBLES 

It has been proven that the average pressure associated 
with the thermodynamic limit of the grand canonical en
semble is given by 

P(p.,(3,</» = suP{(p,p. -CP) -F(P)lp E L 1 (A)}, (5.1) 

where p. is the chemical potential. 14 Here the contribu
tion of the momentum to the free energy is included in 
F which also depends on (3. In terms of conjugates for p 
E L 1(A) and </> E Loo(A), we have 

P(p.,{3,CP» =F*(p. -CPl. (5.2) 

In case that F(p) is a lower semicontinuous proper con
vex functional (Theorem 4.1), we also have 

F( p) = sup{(p, CP) - F*(</» I</> E Loo(A)} (5.3) 

for P E L1 (A). 

Now a remarkable demonstration by Rockafellar directly 
applicable to our problem is the following: Let E and E* 
be any pair of the three Banach spaces L, Loo' L 1 ; and let 
each of E and E* as real vector spaces have the weak 
topology induced on it by the other so that they are duals 
under the bilinear form (3.3). 

Then we have 

Thearem 5. 1: (Rockafellar): Let I be a lower semi
continuous closed proper convex function on R. Let 1* 
be the conjugate of I defined by 

f*W = sUP{7J~ - 1(7J) 17J E R} (5.4) 

for ~ E R. (j* has automatically the same properties as 
assumed for I.) Then 

F*(</» = ~/*(</>(x»dv(x) (5.5) 

for cP E E* and F(p) for pEE are convex conjugates of 
each other. [A lower semicontinuous function is closed 
if {7J 1/(7J) ::$ ~} n dom I is a closed subset of R for every 
real number~. This is the case for our 115.] 

Hence the conjugate integrands I and I * provide con
jugate convex functionals. Furthermore, F and F* are 
automatically lower semicontinuous by Theorem 4.1. For 
uniform thermodynamic systems it has been shown that 

(5.6) 

where p(p., (3) is the average pressure.16 Now if I and p 
are convex conjugates of each other, then 

P(p.,{3,</» = iAP(p. -</>(x),{3)dv(x) (5.7) 

and (5.3) holds. With these results in mind we shall say 
that the canonical and grand canonical ensembles for a 
nonuniform system are equivalent for p., CP,;5 if the fol
lowing thermodynamic relation holds: 

F*(p. - </» = (;5, p. - </» - F(P). (5.8) 

This relation holds if and only if 

p.l - cP E pF(p) (5.9) 
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or, equivalently, 

P E ilF*(jJ. - CPl. (5.10) 

These statements are clearly the same as those which 
describe the Lagrange multiplier solution of the mini
mization problem (3.2). The only diffe.rence appea.:i~ 
to be the function spaces ~sed. Return10g to the orlg1Oal 
derivation of (5.1), we find that L1 (A) in (5.1) can be 
replaced by L since our cP is bounded and measurable. 
Then pEL and cp* E L* where cp* has the representa
tion (4.15), and L* takes the weak* topology induced on 
it by L. Therefore, the Lagrange multiplier in (4.18) and 
the chemical potential play the same role. In order to 
study the existence and uniqueness of p we S~all n~ed 
more specifiC information about the subgradients 10-
volved. 

Let E be any of the three Banach spaces L, L oo ' L1 and 
t E R. Define the right-hand Gateaux derivative (direc
tional derivative) by 

(5.11) 

for P , pEE. If P1 E dom F and P1 + t'p E dom F 
some

1
t' > O,then the derivative (5.11) exists since the 

function F(Pl + tp) is finite and convex in t for some 
interval [O,t']. Furthermore,F~(p1;') is a proper con
vex functional on E since it is bounded below. For P1 E 
dom F, according to Rockafellar, we have that 

cp* E ilF(P1) if and only if F~(P1;P) ~ cp*(p) 

(5.12) 

all P E E,17 Now the left-hand derivativel{('I) and the 
right-hand derivative I~('I) of 1 exist on [0, pcp) and are 
monotone increasing functions satisfying I{('I) :S 1~(11). 
They are equal, and their common value is the derivative 
of 1 except on at most a countable set H}. We can ex
tend the definition of the derivative of f to all of R by 
taking 1'('1) = + IX) if 'I) ~ Pcp and 1'('1) = - IX) if 'I) < O. 
Here the condition (4. 21) is assumed. Furthermore, 

(5.13) 

and any b 1 E [Jl('I)1),/~(111)]' If '1)1 is not equal to one of 
the pOints {n, then the interval indicated is a single 
point equal to the derivative of 1 at '1)1' We shall demon
strate that f~(P1(X» andf{(P1(x» often yield subgradi
ents of F for P1 E dom F. 

Let P1 E dom F and suppose that P1 + t E dom F for 
some sufficiently small t > O. Then it follows by the 
Lebesque convergence theorems that 1 ~(p 1) E L1 (A). 
Now suppose that P1 - t E dom F for some suffiCiently 
small t > O. Then we find thatl{(P1) E L 1(A). Further
more,if P1 is a II-II interior point of dom F then/{(p1)' 
1l!,(P1) E L (A). No~ that the 11-11

00 
interior of dom F is 

nonempty. Now for P1 Edom F,inequality (5.13) gives 

(5.14) 

for pEE and t E R, where 1/1 is any II-measurable func
tion defined on A such that 

(5.15) 

holds a.e. on A. Hence 

(5.16) 

for pEE. Now if E is Loo(A) and P1 ± t E dom F for 
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some sufficiently small t > 0, then 1/1 E L1 (A) and both 
sides of inequality (5.16) are finite. We evidently have 
a stronger result regarding the existence of the Gateaux 
gradient. 

The left-hand Gateaux derivative is defined by 

(5.17) 

for P E dom F and pEE. Now consider F defined on 
L (A' and suppose that P 1 is an interior point of dom F 
s~h that 1'(P1) exists on A e:ccept p.erha~s for a .set of 
measure zero. Since 1 satisfies a Llpschitz condition on 
every closed interval contained in [O,Pcp) andl'(P1) E 
Loo(A) , the Lebesque dominated convergence theorem can 
be applied to show that 

(5.18) 

for pEL (A). This verifies the validity of (4.20), and 
1'( P 1) is fue Gateaux gradient of F at Pl' The inequality 
(5.15) can be used to solve (5.8) or (4.16). 

Proposition 5.1: Let F be defined on Loo(A). Suppose 
that there exist 15 E dom F and jJ. such that 

fl,(p) s jJ. - cp:S Ilt(p) (5.19) 

holds a.e. on A. Then (5.8) holds and the ensembles are 
equivalent for /J., cp, and p. 

Proof: apply (5.16) and (5.12). 

This completes our investigation of the condition (5.9) 
and the subgradients of F. In the next section we con
sider the equivalent condition (5.10) and relate it to 
equivalence of ensembles. 

6. THE EXISTENCE AND UNIQUENESS OF DENSITY 
DISTRIBUTIONS 

In previous sections we described the relationship be
tween the chemical potential /J. and a minimizing den
sity p. However, we have not proven the existence of p 
which solves (3.2). We shall investigate requirements 
for existence. From Proposition 5. 1, we observe that it 
is not difficult to have situations where p is not unique. 
In this section we shall also describe conditions on the 
potential cp which make p unique when it exists. The 
study of uniqueness amounts to a study of the 1ine~ sec
tions of the graph of f('I) which in turn are responslble 
for the multivaluedness of the subgradients ilF*(jJ. - CPl. 
In the next proposition we consider the situation P E 
L (A) and cp E L 1(A). Let L}.(A) have the weak topology 
induced by L (A) and let L tAl have the weak* topology 
induced by L~(A). In these 'fopologies, the spaces L 1(A) 
and L (A) are duals with respect to (3.3). 

00 

Proposition 6.1: Suppose that f is lower semiconti
nuous and has a finite hard core packing density PgI' 
Let the external potential cp be the uniform limit of a 
sequence of step potentials (3.5). Then there exists a 
minimizing density for (3.2). Furthermore, the weak* 
limits of the sequence (3.7) provide densities at which 
(3.2) takes a minimum. 

Proof: Corresponding to the sequence of step poten
tials (3.5), we define sets of step densities. .. 

D .. = {p ~ 0 I P = E 'l)jX" .• 11 pill = Po} (6.1) 
;=1 • 

for 0 < Po < P • Now let D = UD be the weak* closure - cp .. ., 
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of the union. Note that D is the intersection of all weak* 
closed sets containing UD .. C L (A), and D contains all 
limits of weakly convergent seq~ences in D. Define 

(6.2) 

According to the theorem of Alaoglu, the sphere S is 
closed and compact in the weak* topology of Loo(A). 
This makes D n S a weak* closed and compact subset. 
Now in view of what has been proven, we have 

F o(po, cp) = inf{(p, cp) + F(p) I p E D n S}. (6.3) 

We originally demonstrated (6.3) where D was the clos
ure in L of UD ... The weak* closure of UD .. con-
tains the closure of UD .. in L. Notice that if p ~ 0 
a.e. on A is a weak* accumulation point of UD .. then II pill 
= Po since there exists a sequence P 8 ED 8 such that (p 8' I) 
~ (p, I). The weak* closed set D will not include points 
which do not satisfy II pill = Po' 

These facts justify the restatement of (3.2) in form (6.3). 
Now by Rockafellar's results,the functional F is lower 
semicontinuous in the weak* topology of Loo(A) so that 
(p, cp) + F(p) is also lower semicontinuous. Since a 
lower semicontinuous function defined on a compact set 
always assumes its minimum, there exists a 15 in the 
weak* compact set D n S such that18 

F o(po, cp) = (15, cp) + F(15)· (6.4) 

Further suppose that {p 8} is a weakly convergent sub
sequence of {15 .. } defined in (3.8). That is,(p 8 ,1/1) ~ (p, 
1/1) for every 1/1 E Ll (A). Then 15 E D since 15 8 E D 8' Now 
lower semicontinuity of F in the weak* topology gives 

lim inf F(158) ~ lim tnf F(p') = F(p). 
8 p .... p 

(6.5) 

Therefore, 

Fo(Po,cp) = lim i~ [(15s'cp) + F(P8)] 

~ lim inf (15 8 , cp) + lim inf F( 15 8) ~ (15, cp) + F( 15) • 
8 8 (6.6) 

Observe that 15 E S, otherwise the finiteness of F o( Po' cp) 
is contradicted. 

Hence, also, 

(6.7) 

Finally, the assumption that {15 .. } actually has a weakly 
convergent subsequence is valid for the following reason. 
Since A is a compact subset of R K the space L1 (A) is 
separable, and the closed sphere S considered as a topo
logical subspace of L (A) in the weak* topology is a 
compact metric space:19 Then D n S is a compact sub
set of a metriC space S. Hence D n S is a closed and 
sequentially compact subset of S. Since {p .. } is contain
ed in D n S, this sequence must have a weakly conver
gent subsequence with some limit 15 in D n S. This com
pletes the proof of the proposition. 

In case p = + 00, the above method can be applied if 
{15 } has :r subsequence bounded in Loo(A). We can then 
take a sphere S which contains the bounded subsequence 
and apply the above argument to D n S. For the case 
p = + 00 it appears useful to consider the problem 
(3:2) for p E L 1(A) and cp E Loo(A) with each _space hav
ing the weak topology. A prerequisite that {pJ be weak
ly sequentially compact in Ll (A) is that it be bounded in 
norm. This is automatic since 1115 .. 111 = Po' If we take 
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the weak closure of {p .. }, then the weak closure of {P .. } 
is a weak compact subset of L 1(A) if and only if W .. }is 
weakly sequentially compact (see p. 430, Dunford
Schwartz). We most likely cannot expect {p .. } to yield 
apE Ll (A) satisfying (6.4) unless this sequence has at 
least one weakly convergent subsequence. We shall con
sider this problem along with the uniqueness problem. 

We shall now consider the minimization problem (3.2) 
from the viewpoint of the pressure (5.1). For conveni
ence we write 1/1 = jJ. - cpo We are interested in the case 
111/111 < + 00. We consider densities at which the follow
ing assumes its minimum: 

F*(I/I) = - inf{F(p) - (p, 1/1) I p E L1(A)}. (6.8) 

In the case Pcp finite, the space Ll (A) can obviously be 
replaced by p E Loo(A) satisfying II P 1100 ~ Pcp' and mini
mizing densities exist since F is weak* lower semi
continuous on the weak* compact sphere (6.2). For Ppp 
= + 00, in view of the bound (4.22), there exists an a < 
Pcp such that 

/(a)-aill/lll=o>o (6.9) 

and such that 

(6.10) 

holds for 1/' ~ 1/ ~ a and all x E A. Inequality (6.10) also 
follows from convexity of / . 

Let p E Ll (A) n dom F and define Aa = {x I p > a}. If 
II(A

9
) ;I! 0 then II P 1100 > a and conversely. Using inequal

ity \6.10) we have 

(6.11) 

Let Pa = PXA-Aa + aXAa on A, then 

(6.12) 

We conclude that 

(6.13) 

and that there exists apE Loo(A) such that 

(6.14) 

We can at least solve (3.2) for Po = 1115 111 associated 
with J.l. and satisfying (6.14). 

We now investigate the uniqueness of p satisfying (6.14) 
by using the condition p E aF*(l/I). This is the condition 
(5.10) given previously. Our approach will be to con
struct aF*(1/I) from / which is defined as a lower semi
continuous proper convex function on the real numbers 
R. It will be demonstrated that linear sections of the 
graph of / are responsible for the multivalued nature 
of the subgradients of F*. We have the following interest
ing chain of equivalent statements: 

1/1 E af*(~l) ¢=:;> /*W ~ f*(~1) + 1/1(~ - ~1) 

<=> 1/1 E [f.l'(~l),jl'(~l)] 

¢=:;> /(1/1) + f*(~ 1) = 1/1 ~ 1 

¢=:;> ~1 E [/l(1/1),/~(1/1)]' 

~1 E a/(1/1) ¢=:;> /(1/) ~ /(1/1) + (1/ -1/1)~1 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 
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for ~,7/ E R. The proper convex functions f and f* are 
conjugates. The convex conjugate f*, being lower semi
continuous in R and finite in every bounded open interval, 
is therefore continuous in every bounded open interval. 
Let 1/1 E Loo(A). Rockafellar has shown that f*(I/1) is a 
measurable function. 20 Let PI E L 1(A) and suppose that 
PI E af*(1/I1) for every x E A. If 1/11 is bounded then PI 
is also bounded. Using (6.15) and Theorem 5.1 gives 

F*(I/I) 2: F*(1/I1) + (PI' 1/1 -1/11) 

and PI E aF*(1/I1) follows. 

(6.20) 

The graph of f has a linear section over the interval 
[7/1,7/21 c [O,pcp ) if 

(6.21) 

for all 7/ E [7/1,7/ ] and some ~1 E R. If f has a linear 
section of slope f l' we denote by l(f, ~ 1) the largest 
closed interval [7/1,7/2] over whichf is linear with slope 
~1' Sincef{(7/) is left-continuous andf~(7/) is right
continuous, the interval l(f, ~1) can be found from 

7/1 :::;:: inf{7/lf~(7/) :::;:: ~1} and 7/2:::;:: suP{7/lf{(7/) :::;:: ~1} 
(6.22) 

using the facts that f{(7/) S f~(7/) on R and f{(7/2) 2: f~(7/1) 
if 7/2 > 7/1' Notice that 7/1 and 7/2 defined in (6.22) satisfy 
7/22: 7/1; and if 7/2> 7/l'then [7/1,7/:;>,] must be an interval 
over which f is linear with slope Ii l' The fact that fL 
and f ~ are incr eaSing is also used. Then 

(6.23) 

for the interval of (6.22). Notice that (6.22) gives either 
a point or a closed interval for every ~ l' With this defi
nition we have the following useful fact. 

Lemma 6. I: Suppose that f has a linear section over 
l(f'~l)' Then 

f(7/) + f*(~l):::;:: 7/~1 (6.24) 

for all 7/ E l(f, ~1)' 

Proof: Let l(f, ~ 1) = [7/1' 7/2]' The line f(7/1) + ~ 1 
(7/ - 7/1) is a supporting line for f and, since the inter
val [7/1,7/2] is maximal,f(7/) > f(7/1) + ~1(7/ - 7/1) if 
7/ ~ [7/1,7/2]' Thus 

i~ [f(7/) - 7/~1] =f(7/1) - 7/1~1 :::;::f(7/) - 7/~1 

for 7/ E ['1)1' '172] which completes the proof. 

According to Lemma 6.1 and (6.17) it must be true 
that 

(6.25) 

Wit.h (6.24) in mind1 if there is only one 7/1 E af*(~l) we 
defIne l{f'~l):::;:: {'I71J' 

Now let af*(~l) :::;:: [7/L,7/R] as in (5.16). Then 

f('I7) =f(7/L) + (1) - 7/L)~l (6.26) 

for all 7/ E [7/L,7/R] and this implies 

(6.27) 

We conclude that the relationship between linear sec
tions and subgradients must be 

af*(~) :::;:: l{f,~) and af(7/):::;:: l{f*, '17). (6.28) 
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Next consider what (6.28) has to do with uniqueness of 
the p which minimize, i.e., densities at which the en
sembles are equivalent. Define the measurable sets 

(6.29) 

Assume l{f,~) is an interval and II(A~) > O. For '171' '172 
in l{f,~) and 7/1 < 7/2 let 

PI = PX,,-,,~ + 7/1X,,~ and P2:::;:: PX,,-,,~ + 7/2 X" , . 

Now IIPl - P2111 :::;:: 17/1 - 7/2 I II(A t ) > 0 and 

F*(I/I) = <PI' 1/1) - F(P1) :::;:: (P2' 1/1) - F(P2)' 

(6.30) 

(6.31) 

This makes it clear that two different densities can yield 
the same average pressure and even the same pressure 
distribution. In this example, the free energy distribu
tions are different; however, it is possible to introduce 
more linear sections and sets (6.29) of nonzero measure 
so that average pressure and free energy are the same 
for distinctly different densities. These ideas motivate 
the following definitions on the behaviour of external 
potentials. 

Definition 6.1: We say that the II-measurable func
tion 1/1 on A is of continuous measure at ~ E R if v(A~) 
== 0, and 1/1 is of continuous measure on R if v(A,) == 0 
for all ~ E R. 

Notice that if ~ is a measure discontinuity of 1/1 [i.e., 
II(A,) > 0] then JJ. - ~ is a measure discontinuity of cpo 
We shall want to find P pointwise so that 

f(p) + f*(I/1) = pl/l on A. (6.32) 

Since 1/1 is bounded andf(7/) - 'T/l/I is lower semicontinu
ous on R for each x E A, a bounded p does exist satis
fying (6.32). The difficulty is that we cannot always be 
sure that p found in this way is II-measurable. 

Now !J; l' -+ 1/1 uniformly on A, and for each 1/11' there 
exists a measurable step density P1' satisfying (6.32) 
with !J;1" Let p be either of the measurable limit func
tions 

lim inf P1'(x) or lim sup P1'(x). (6.33) 
l' l' 

These functions are bounded above by Pc;{!' For fixed 
x E A there is a subsequence {p J such that P.Ii -+ p. 
Then by continuity 

limf(PJ =f(P) and lim!*(I/IJ =!*(!J;) 
K K 

for this x E A. The limits (6.33) evidently are measur
able P conforming to (6.32). 

Lem ma 6.2: Suppose that f( 7/) has no linear sections 
or that if f(7/) has linear sections then ~1 E R is not the 
slope of f on any linear section. Then 7/1 such that f(7/1) 
+ !*(e1) = 7/1~1 is unique. 

Proof: Now obvious from 7/1 E af*(~l) = l(f, ~1) and 
the set af*(~ 1) being a singleton set. 

Theorem 6. 1: Suppose thatf has no linear sections or 
that !J; on A does not equal (except for a set of measure 
zero) the slope of f on any linear sections. Then P is 
unique. 

Proof: A measurable p satisfying 

f( p) + f*(I/1) = pI/I 
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at each point x E A is unique by Lemma 6.2. The next 
theorem is more general. 

Theorem 6.2: Suppose that the slopes of linear sec
tions of f and points where 1/1 is of discontinuous meas
ure do not coincide. Then 15 satisfying (6.14) is unique. 

Proof: The proper convex function f can have at 
most a countable set of distinct linear sections. Let 
{.;} be the countable set of slopes associated with linear 
sections of f. Now II(A t ) = 0 for each I; by assumption. 
If PI and P2 are two density distributions satisfying 

f(Pj) + /*(1/1) =Pjl/l (i = 1,2) 

for each x E A then they can only differ on the set UA t . 
But we have 

II(U At) = L; v(At) = 0, 
t t 

which implies II P ~ - P 21100 = O. This proves that p E 

Loo(A) satisfying t6.14) is unique. 

As a corollary, if 1/1 on A is of continuous measure, then 
the minimizingp is unique. If p is unique, then it must 
be the limit of {Pr} since the limits (6.33) satisfy (6.32). 

7. CONVERGENCE OF CANONICAL DENSITY 

In this section we shall discuss the relationship between 
a density distribution which satisfies (6.14) and the 
canonical density sequence (2.6). Now the initial do
main Ao is not special in that we can define for any 
fixed A a density sequence (2.12) corresponding to (2.6). 
Thus we denote by {Pn(x)} the sequence (2.12) referred 
to any fixed domain A. Notice that {15n(x)} of (2.6) satis
fies the condition nV(A)-l = Po but {Pn} does not. The 
domain A is the same for all P

n
' We define 

(7.1) 

for CP,I/I E Loo(A). The sequence (7.1) is a sequence of 
convex functions for t E R.2l Furthermore, each gn is 
differentiable with respect to t. Further define 

(7.2) 

The function F 0 is concave in cp E Loo(A). Also F 0 has 
the property of being continuous in cp for the norm topo
logy of Loo(A) and upper semicontinuous in cp for the 
weak* topology of Loo(A). Evidently there is no weak* 
neighborhood on which F 0 is bounded below and there
fore F 0 cannot be continuous in cp E Loo(A) for the weak* 
topology. The free energy F o( Po' CP) is also convex in 
Po' For these properties,g(t) is a continuous convex 
function for t E [-1,11 The functions (7.1) are continuous 
convex on [-1,1] also. Now for IICPl - CP21100 < £ 

we have that 

(7.3) 

holds for all n such that nV(A)-l = Po' Let t l ,t 2 E [-1, 
1] such that It 1 - t).1 < £1M and let CPj = cP + tjl/l for 
111/11100 ~ M. Then t7. 3) says that 

Ign(tl)-gn(t2)I~po£ (7.4) 

for all n. Inequality (7.4) indicates that the sequence 
(7.1) is equicontinuous on [-1,1]. When cP and 1/1 are 
step potentials or uniform limits of step potentials, i.e., 
limits in the 11 0 11 00 norm, then 

linm gn (t) = g(t). (7.5) 
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By the Ascoli theorem, the sequence (7.1) converges 
uniformly on [-1,1] whenever it converges pointwise. 
Pointwise convergence of the sequence (7.1) occurs 
whenever the thermodynamic limit exists. Let T(A) 
denote the closure in L (A) of the set of all step poten
tials of form l3. 5). Then T(A) is a subspace of L (A), 
and (7.5) holds if cP, 1/1 E T(A). Observe that T(A)~on
tains the Banach space C(A) of all continuous 
functions defined on the compact set A. For the se
quence (7.1) and the canonical densities {p } defined 
for a fixed A, we have n 

(7.6) 

and 

(7.7) 

By convexity 

(7.8) 

holds on [-1,1] for all n. Given £ > 0, by the uniform
ity of convergence, 

g(t) 2: g(O) - £ +g~(O)t (7.9) 

holds for t E [-1, 1] and all n sufficiently large. In
equality (7.9) indicates that the g~ (0) for n sufficiently 
large are approximate subgradients of g(t).22 In fact, 
every convergent subsequence of {g~(O)} provides the 
slope of a supporting line of g(t) at t = O. The sequence 
(7.6) has convergent subsequences since it is bounded 
according to (7.7). Because g(t) is convex the left-hand 
derivative g~(t) and the right-hand derivative g~(t) 
exist in (-l,l),and by (7.9) we have 

g~(O) 2: lim s~p g~ (0) 2: lim i~ g~ (0) 2: g~(O). (7.10) 

Let C* be the dual space of the Banach space C(A) of 
continuous functions on A. Then application of inequality 
(7.10) gives the following. 

Proposition 7.1: Suppose that F o(po' CP) is Gateaux 
differentiable at cP for 1/1 in C(A), and suppose that the 
Gateaux gradient p* E C* exists at cpo Then 

liJU (Pn,l/I) =d: Fo(po'CP +tl/l)lt=o=p*(I/I) (7.11) 

for 1/1 E C(A). 

If (7.11) holds on C(A), then p* must be a positive func
tional since each Pn is positive. We know that accord
ing to the Riesz representation theorem every positive 
continuous linear functional defined on C(A) is express
ible as 

P*(I/I) = k I/I(X)dll*(X) , (7.12) 

where 11* is a unique positive Borel measure on A. If 
11* is absolutely continuous with respect to /I then the 
Radon-Nikodym derivative exists and 

P*(I/I) = (p, 1/1) (7.13) 

for a unique 15 E Ll(A). That iS,15 = dll*/dll is the Ra
don-Nikodym derivative when it exists as an element of 
Ll (A). Of course, a similar result can be stated 'for 
Proposition 7.1 with T(A) replacing C(A). The continu
ous linear functionals on T(A) are extensions of the con
tinuous linear functionals on C(A). According to Rocka
fellar's results, since - F o( Po, cp) is finite and continu
ous for cP E Loo(A) (norm topology), the free energy func-
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tional does have subgradients.23 Because ff(A, n, (3, cf» 
converges uniformly to F o(po, cf» on compact subsets of 
L (A) (Ascoli theorem) the subgradients of - ff(A, n, (3, 
cf» provide approximate subgradients of - F o(po' cf» 
over compact subsets of Loo(A). In fact, the weakly con
vergent subsequences of {Pn} yield subgradients of 
-Fo(po'cf»· 

Proposition 7.2: Suppose that P E L1 (A) is the weak 
limit over C(A) of some subsequence of {Pn}' Then - P 
is a subgradient of - F o( Po, cf» over C(A). 

Proof: Let {p J} be a subsequence of {Pn} such that 
(PJ' 1/1) ~ (p, 1/1) for each 1/1 E C(A) as J ~ 00. Now gJ(t) 
~ giO) +g~(O)t for t E [-1,1]. Hence 

(7.14) 

for all 1/1 E C(A), and this completes the proof. 

A corresponding result can be stated for the Banach 
space T(A) or for any subspace of this space. 

Suppose that in addition to the hypothesis of Proposition 
7.1 there exists apE L1 (A) such that 

(7.15) 

We now know that if f(1/) has the property (4.21) for 
finite Pcp then p exists. Also,p exists if Po is associ
ated with a chemical potential p. as in (6.14). If (7.15) 
holds, then - p E 0(- F o(po, cf>)) since 

Fo(po'cf> + 1/1) s (p,cf> + 1/1) + F(p) = Fo(po'cf» + (p,I/I). 
(7.16) 

Then p is the unique Gateaux gradient of Proposition 
7.1 satisfying (7.13). In view of Proposition 7.1, 
we shall want to investigate conditions under which 
Fo(po,cf» is differentiable. 

It has been shown that 

(7.17) 

for the pressure (5.1). We find F 0(1/, cf» = + 00 if 1/ < 0 
or if 1/ > Pcp, and F 0(1/, cf» is a proper convex function in 
1/. 

Theorem 7.1: Let f have the property that 

lim f(1/) = + 00. 
"->Pcp 

(7.18) 

Then F 0(1/, cf» is a lower semi continuous closed proper 
convex function for 1/ E Rand 

(7.19) 

That is,F 0(1/, cf» and P(p., cf» are convex conjugates for 
1/,p.ER. 

Proof: Let cf> E Loo(A). Using Jensen's inequality we 
have that 

and 

- 1/11 cf> 1100 + f(1/) S F 0(1/, cf». 

Now [apply (4.22) if Pcp = + 00] 

lim (f(1)-1)IIcf>1I )=+00 
ij->Pcp 00 

(7.20) 

(7.21) 

(7.22) 

and dom F 0(1), cf» = {1/ E R IF 0(1/, cf» < + oo} = [O,pcp)' 
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Hence F 0(1/, cf» is continuous convex for 1/ E [0, a] c 
[O,p c ) and is closed and lower semicontinuous on R. 
As iriTheorem 4.1 this implies (7.19) and completes 
the proof. 

From Theorem 7.1 we obtain that 

j.Lo E oFo(Po,cf» if and only if Po E oP(llo'cf» 
(7.23) 

or if and only if 

F o(po' cf» + P(j.Lo' cf» = j.L(}Po· (7.24) 

If Po E oP(j.Lo, cf» then (7.15) holds if and only if 

F*(j.Lo-cf» = (p,j.Lo-cf»-F(p). (7.25) 

For the property (7.18) there always exists a p which 
satisfies (7.25) if cf> is bounded. 

Let Et be a sequence of positive numbers such that E/t 
~ 0 as t ~ O. There exists a sequence {Pt} with II Pt 111 = 
PO' in general depending 1/1, such that 

(7.26) 

for t ~ O. For the sequence {Pt} satisfying (7.26), we 
have that 

lim (Pt, cf» + F(pt) = F o(po' cf» 
t->O 

since I (Pt> 1/1) I S Poll 1/11100 and 

lim Fo(po'cf> +tl/l) = Fo(po,cf»· 
t->o 

(7.27) 

(7.28) 

The right-hand derivative Fo(cf>jl/l) exists and is defined 
by 

Fo(cf>j 1/1) = lim [F o(po' cf> + tl/l) - F o(po, cf»]/t. 
no (7.29) 

Inequality (7. 26) implies that 

Fo(cf>jl/l) ~ lim sup (Pt>I/I). (7.30) 
t->o 

Suppose that Fo(cf>jl/l) = (p,l/I) for all 1/1 where p is the 
Gateaux gradient.24 Choose {Pt} so that (independent of 
1/1) 

F o(po, cf» ~ (Pt, cf» + F(pt) - E t · 

Then 

lim inf (PI' 1/1) ~ Fo(cf>; 1/1) 
t->O 

(7.31) 

(7.32) 

and P t ~ P weakly. Since {p t} is weakly convergent, we 
have 

Fo(po'cf» ~ lim inf (Pt,cf» + lim inf F(pt) 
t->O t->O 

~ (p, cf» + F(P). (7.33) 

Now P is in dom F and lip 111 = Po' This demonstrates 
that the Gateaux gradient p is the unique density at 
which (3.2) assumes its infimum. 

We shall say that the infimum F o(po, cf» is attained 
strongly if every sequence {Pt} with II p t ll1 == Po satis
fying (7.27) has a weakly convergent subsequence. In 
particular, the weak limit of a weakly convergent sub
sequence is a point at which the infimum of (3.2) is 
attained. 

Proposition 7. 3: Suppose that the infimum F o( PO' cf» 
is attained strongly and that p satisfying (7.15) is unique. 
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Then Fo(po,cp) is Gateaux differentiable at cp with gradi
ent p. 

Proof: For each 1/1, the sequence {p t} satisfying 
(7.26) has a subsequence which converges weakly to p. 
In view of (7.16) and (7.30),p is the Gateaux gradient of 
Fo(po'cp) at cp. 

The spher e S = {p III p II =s a} has an important topologi
cal property. Since the i'inear spaces C(A), T(A), and 
Loo(A) are dense subsets of L 1(A) (II-Ill-dense), the 
weak topology induced on S by any of these linear spaces 
coincides with the weak* topology [L1 (A -topology] on S. 
Furthermore, the sphere S as a topological space with 
the L1 (A)-topology is sequentially compact since it is 
compact and L1 (A) is separable. Now if for each 1/1 there 
is a sphere S which contains the sequence {Pt} of C7. 26), 
then {Pt} has a weakly convergent subsequence. This 
implies that F o( Po' cp) is attained strongly. We have 

Theorem 7.2: If Pcp < + 00 and p satisfying (7.15) is 
unique, then 

for 1/1 E T(A) and 0 =s Po < Pcp' 

Proof: An application of Propositions 7. 1 and 7. 3. 
The next theorem will allow us to show that unique p 
satisfying (7.25) are Gateaux gradients. 

Theorem 7.3: The supremum F*(1/I) is attained 
strongly. 

Proof: Let {p t} be a sequence in L1 (A) such that 

limF(p t)-(pt ,1/I) =-F*(1/I) (7.35) 
t 

for 1/1 E L (A). We shall show that {Pt} has a weakly con
vergent s~sequence, and the limit of a convergent sub
sequence provides a p satisfying (7.25) for 1/1 = IJ.o - cp. 
If P is finite, then {Pt} is contained in a sphere S with 
a = ~ , and there is a weakly convergent subsequence. 
Now ~nsider the case P = + 00. By convexity of f and 
property (4. 22) , for (l > crthere exists an a> 0 such 
that 

(7.36) 

holds for almost all x E A when 7) 2:: a. Inequality (7.36) 
follows from 

(7.37) 

for 

ma = (f(a) - f(O»/a, (7.38) 

wherem ~oo as a ~P by (4.22). We also pick a to be 
as in (6.h) and (6. 13).CPSince f(0) = O,F has the following 
important property. Let PI = PXAl and P2 = PM2 ' where 
A1 and A2 constitute a disjoint partition of A. Then 

F(p) = ~J(p)dll + k
2
f(p)dll = F(P1) + F(P2)' 

sincef(p)xA; =f(pXA)' Define 

At = {x E A I Pt > a} 
and 

(7.39) 

(7.40) 

Observe that the sequence {Pt} is contained in the 
sphere S of radius a. Then 
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- F*(1/I) =s F(pt) - (Pt,1/I) =s F(pt) - (Pt,1/I). (7.42) 

Let p~ = PtXA-At' The sequences {Pt} and {pa have sub

sequences {p;J and {pJ which are weakly convergent. 
This implies that {aXAJ"is also weakly convergent, and 
the sequence II(Aa) converges. Let P be the weak limit 
of {p;J , then 

li,iO F(p~) - (p~,1/I) = F(jj) - (p,1/I) = - F*(1/I) , (7.43) 

since 

F('p J = F( p~) + F(aXA ) 
a 

(7.44) 

and 

(7.45) 

converges. Let P~ = PaX.A so that Pa = P~ + p~. Then 
using (7.39, we see that a 

li,iO F( p~) - (p~, 1/1) = O. (7.46) 

Inequality (7.36) shows that 

F(p~) - (p~,1/I) 2:: (l ha Padll2:: O. (7.47) 

Hence, for any 1/1 E Loo(A) 

Jh a P a1/ldllJ =s 111/11100 ha P a dll, (7.48) 

and the sequence (7.48) converges to zero. Because 
(p~,l/I) ~ 0 for every 1/1 E Loo(A) and (p~,1/I) ~ (p,1/I), 
this proves that {p.J converges weakly to p. This com
pletes the proof. 

We can apply Theorem 7.3 to the Gateaux differentiabi
lity of F o(po, cp) in the case Pcp is not finite. Let {Pt} be 
as in (7.26) and let Po correspond to IJ.o as in (7.24). 
Then 

(7.49) 

arid by Theorem 7.3 there exists a subsequence of {p t} 
which is weakly convergent to some p. If this p which 
satisfies (7.25) is unique, then it is the gradient of F 0 
at cp. Theorem 7.3 gives just the property needed to 
consider the differentiability of the pressure P(IJ., cp) 
with respect to the external potential cp. Let iii = IJ. - cp 
and suppose that p satisfying 

F*(ljI) = (p, iii) - F( p) 

is unique. 

Let 

(7.50) 

(7.51 ) 

Then P _~ P weakly according to Theorem 7.3, and the 
suprerr 1/1) of (-, ljI) - F is attained strongly at p. As
suming that F and F* are conjugates, a direct applica
tion of a theorem by Rockafellar gives (see the proof 
of Theorem 8.1) 

Theorem 7.4: The density p satisfies (7.50) and is 
unique if and only if p is the Gateaux gradient of F* at 
iii. That is, p = VF*(ljI). 

We have a stronger result. 2S The pressure F* is 
(7.41) Frechet differentiable at VI if and only if the function 
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( -, Vi) - F attains its supremum strongly with respect 
to the norm topology of L1 (A). This means that the se
quence {p oJ must converge (in II-Ill norm) to 15 in order 
that j5 be the Frechet gradient. 

We complete the study of the equivalence of canonical 
and grand canonical ensembles with a discussion of the 
grand canonical density. 

8. GRAND CANONICAL DENSITY DISTRIBUTION 

The grand canonical partition function is defined by 
00 

E: (A, Il, 13, cp) == L) Z(A, n, 13, cP - Il) 
n=O 

(8.1) 

and the average pressure is given by 

13P(A, 1l,13,cp) = V(A)-l In E:(A, 1l,13,CP). (8.2) 

For cP E T(A), the sequence P(A, Il, 13, cp) is convergent to 
F*(1l - CP) [also called P(Il, CP)). The grand canonical 
density distribution (or one body correlation function) is 
defined as 

00 e8~n _ 
15 (x) = L) f e 8Hn(x·"2·····"n) 

A n=1(n-1)! R Kn An-1 

XdP1···dPndx2···dxn/E:(A,Il,13,cp) (8.3) 

for each A and x E A. Using the definition (2.6) of the 
canonical density distribution, (8. 3) becomes 

00 

PA(x) = L)Z(A,n,13,cp -1l)Pn(x)/E:(A,Il,13,cp). (8.4) 
n=l 

For any divergent sequence {a} of positive numbers, let 
A = aAo and let {p J denote the sequence of functions 
obtained by referring each j5 A to the initial domain Ao' 

That is, define 

for all x E Ao' In this section we shall show that 15 
satisfying (5.8) over Ao is usually the weak limit of 
{p ,J We know that the pressure P(Il, 13, cP + tl/l) is a 
convex function in t, and in conjunction with this we 
have the following: 

(8.5) 

Lemma 8. 1: The functions P(A, Il, 13, cP + tl/l) ar e 
convex in t, and 

%t P(A, Il, 13, cp - tl/l) I t=O = V(A)-l J,.. I/I(x) 15 A (x)dx. 
(8.6) 

Proof: Let CP,I/I E Loo(A) and consider t E (-1,1). 
First, since the interaction Un is stable, we have an in
equality which gives uniform convergence of the series 
defining E: (A, Il, 13, cP + tl/l) and its derivatives: 

I~~ (L)l/Iye-8(Wn+n~) I:::; ~~ (nlll/l1l00)Je8Mn 
(8.7) 

for M =B + II cplloo + 111/111
00

, Xi E A (i = 1, ••. ,n), and 
t E (-1,1). Here Un (x1 , ••• ,xn ) ~ - nB for all n is the 
usual stability condition. Let zn(t) == Z(A,n,13,cp + tl/l) 
and 

n 

An(t) = L) e8 I.1 i zN)· 
i=O 

(8.8) 

Now derivatives of zn (t) exist and 

z(J)(t) = (-13)J r (~"'(X.))J e-Mn+titl/l(x) 
n n! JRKnAn f;f 'I' , 
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since 
-8t' E~ _ -8n, 

lim e I e == - 13 L) lJ;e- 8tErjI 
t'U t - t 

(8.10) 

for each (Xl"" ,Xn) E An. Using the convexity of exp 
(-13t L)I/I) in t and the Lebesque dominated convergence the
orem, we obtain (8. 9)from (8.10). WedefineA(t) =E: (A, Il, 13, 
cp + tl/l). Then for each A the sequence of derivatives 
{A~J)(t)} converges uniformly on (-1,1) to A(J)(t) [an ap
plication of the Weierstrass test with bound (7.72]. Fur
thermore, the sum (8.4) converges uniformly to PA(X) 
a.e. on A. These results verify (8.6), since 

13 %t PtA, Il, 13, cp + tl/l) I t=O = V(A)-l ~lgr (8.11) 

It remains to show that In A(t) is a convex function for 
t E (-1,1). Convexity is verified if 

(8.12) 

holds for t E (-1,1) and all n, since then 

(In A(t))" ~ 0 (8.13) 

for t E (-1,1). Holder's inequality gives that 

(8.14) 

and this demonstrates convexity for the functions (7.1). 
Then 

(8.15) 

Hence 

n n (n)2 L) Z~ L) ZJ - L) Z~ ~ 0 
J=O J=O J=O 

(8.16) 

for t E (-1,1) and all n. Notice that it is sufficient to 
consider (8.8) for Il == O. This completes the proof. 
Applying Lemma 8. 1, we have that 

(8.17) 

holds for t E (-1,1), where P a(t) = PtA, Il, 13, cP - tl/l). 
Now for cp, 1/1 E T(A), P a(t) ~ P(Il, 13, cp - tl/l) and we 
have 

Theorem 8. 1: If p is a unique denSity satisfying 
(7.50),then 

~P(Il,13,CP -tl/l)lt=o = (15,1/1) =li~ (Pa,l/I) (8.18) 

for CP,I/I E T(A). 

Proof: A direct application of Theorem 7.4 and Lem
ma 8.1 and the following applicable theorem proven by 
Rockafellar: Let f and g be proper convex functions con
jugate to each other on X and Y, respectively. Then f is 
Gateaux differentiable at x with y = Vf(x) if and only if 
the infimum of the function g - (x, .) over Y is finite and 
attained at y strongly with respect to W(Y,X). Here 
W(Y,X) denotes the weak topology induced on Y by X.26 

On the continuity of density distributions we have the 
following: Let 1/1 E L1 (A) and p E Loo(A) so that Loo(A) = 



                                                                                                                                    

1086 C. S. Simmons and C. Garrod: The density of a nonuniform system 

L1 (A)*. Suppose that V is ~.bnempty 11.11 1 -open subset 
of L1 (A) such that F* is Gateaux differentiable through
out V. Then the density distribution p = VF*(I/I) , which is 
a gradient mapping from V to L 00 (A), is continuous from 
the norm topology to the weak* topology on Loo(A). This 
fact follows from another of Rockafellar's theorems 
since F* is a weak lower semicontinuous proper convex 
function on L 1(A).27 That is,we have that if 

Then (9.1) also holds if P is replaced by 

Furthermore, if P satisfies the condition 

1086 

(9.5) 

(9.6) 

p(l/I) = VF*(I/I) on V, (8.19) as well as (9.4) for IIpl11 = po,then the density distribu
tion (9.5) satisfies 

then for 1/1 E V 

(p(1/I ex), cp) ~ (p(I/I), cp) (8.20) 

as IIl/Iex-I/I 1l 1 ~Ofor allcp E L 1(A). 

Apparently the continuity of the pressure as a function 
of the density distribution p is determined by the be
havior of the interaction. In the case of pair interac
tion with positive or hard core pair potential, the de
rivative /'.(7/) exists in (O,Pcp) since the graph of P(jJ.) 
has no linear segments. Then the Gateaux gradient of 
Fat p equals f'(p) and is continuous on dom F from 
the norm topology of Leo(A) to the norm topology of 
L1 (A), since f I is uniformly continuous on closed sub
intervals of [O,Pcp). The canonical pressure distribu
tion is given by 

Po(p,{3) = Pf'(p,{3) - f(p,{3) (8.21) 

and corresponds to p(jJ. - cp,(3) if jJ. - cp =f'(p,{3). The 
pressure distribution Po(p) is continuous on dom F from 
the Loo(A) norm topology to the L 1 (A) norm topology 
since f(p) is continuous in this way and 

II pf'( p) - P1f'(P1)1I 1 S II p - p111eo IIf'(P1) 111 

+ lip lloollf'(p) - f'(P1)1I 1 (8.22) 

for P,P1 E dom F. Therefore,we have 

IIPo(p,{3) - Po(P1,{3)1I 1 ~ 0 

as lip - p11100 ~ o. 

9. PHASE TRANSITIONS 

(8.23) 

Next we consider the phase transitions of a nonuniform 
system at fixed temperature. Such phase transition 
behavior is exhibited by nonuniqueness of the density 
distribution.2S Consider the situation in which the den
sity distribution p satisfying 

P(jJ.o, cp) = (p, jJ.o - ¢) - F(p) (9.1) 

is not unique. Thus, suppose that cp is of discontinuous 
measure at ~o and thatf('I1) has a linear segment over 
the interval ['111' '112] C [O,Pcp) with slope (jJ.o - ~o). 
Then p can be expressed as 

(9.2) 

where Ato = {x E A I cp(x) = ~o} and 

(9.3) 

holds according to Lemma 6.1. Now let p be any den
sity distribution on A such that 

Fo(po,cp) = (p',cp) + F(p/). (9.7) 

We conclude that a density distribution which is not uni
que for one ensemble is then not unique for the other. 
In fact, suppose that p corresponds to minimizing the 
free energy and satisfies (9.3) on a region Ato of con
stant potential, where 

(9.8) 

for '11 E ['111,'112]' Now we have 

(PXA'o'CP) + F(PXA'o) = k~o (jJ.oP + fo)d/l, (9.9) 

so that (9.7) holds for a p' satisfying (9.5) and (9.6). 
Let y(x) denote a one-to-one transformation of A~ 
onto itself such that y(x) has a Jacobian equal one.

o 
Then 

(9.10) 

satisfies (9.4) and (9.6) and yields another p' according 
to (9.5) where (9.7) holds. 

We shall now show that if the density distribution p is 
not unique then the pressure is constant over the convex 
set of all p satisfying (9.1). Consider the situation where 
the density is not unique and let P1 and P2 be two dif
ferent densities satisfying (9.1). Then 

(9.11) 

where Po = .\'111 + (1 - '\)'112 (0 s .\ s 1) for II pill = Po 
and n p;1I 1 = '11; is also a density distribution satisfying 
(9.1). Note that '111 and '112 need not be different. For 
this situation, we find that 

and 

F o(po' cp) = .\F 0('111' cp) + (1 - .\)F 0('112' ¢). 

The average canonical pressure is defined as 

o 
p o('I1, cp) = '11 0'11 F 0('11, cp) - F 0('11, cp) 

(9.12) 

(9.13) 

(9.14) 

and is also a function of (3. Now if P o('I1, cp) is constant 
over an interval ['111> 1)2]' then the free energy is linear 
in the average density Po as in (9.13) for Po = .\'111 + 
(1 - '\)'112' and conversely. 

Furthermore, if the free en<lrgy F o(po, ¢) is linear in 
the average density Po over an interval ['111' '112]' then p 
is linear in Po as in (9.11). We shall demonstrate this 
last statement. Suppose that F o(po' cp) satisfies (9.13) 
and let 

(9.15) 

(9.4) for II p;1I 1 = '11;. Then p determined as in (9.11) satisfies 
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(9.16) 

and 

Fo(Po,CP):S (p,CP) + F(p):s ~0(1/1'CP) + (1- ~)FO(1/2'CP)· 

Hence 
(9.17) 

F o(po' CP) = (p, CP) + F(p) (9.18) 

follows, proving that p corresponds to minimizing the 
free energy. The linearity of F as in (9.12) also follows. 

The canonical pressure distribution Po(p(x) , (3) is de
fined by (8.21) so that the ensembles are equivalent if 

(9.19) 

when p corresponds to 11-0 - cP as in (9.1), and if 

(9.20) 

IC. Garrod and C. Simmons, J. Math. Phys. 13, 1168 (1972). 
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The circle theorem of Lee and Yang is proved for Ising ferromagnets of general spin with 
degeneracy or symmetric potentials ",,(-S,) = ",,(S,); i.e., all the zeros of the partition function 
::: = Tr exp Cf.Ki,SiS, + {JA"f., "'t(S,) + h"f.,S,) lie on the unit circle of the complex fugacity plane 
(z = e- h ) for Ki' ~ 0, A Z 0, and for "nondecreasing functions" ",,(S,); ",,(S) ~ ",,(S - I) Z ... 
Z ",,(1/2) [or ",,(0)), including the proof by Griffiths for the usual Ising model of arbitrary spin. 
The analyticity of the limiting free energy of such a generalized Ising ferromagnet and the absence 
of a phase transition are thereby established for all (real) nonzero magnetic field. Griffiths-Kel\y
Sherman inequalities on spin correlations and Baker's inequalities on critical exponents are dis
cussed in connection with the above model and also in a more general case. 

1. INTRODUCTION 

Since Lee and Yang l discovered a remarkable circle 
theorem on the distribution of zeros of the partition 
function for Ising ferromagnets with spin t , this circle 
theorem has been. extended to other several cases such 
as Ising ferromagnets of higher spin,2-5 the monomer
dimer problem,6 Heisenberg ferromagnets, 7-9 and 
ferroelectric models. 9,1 0 This theorem has applica
tionll - 13 to discussions of scaling behaviors in above 
ferromagnets. 

In a previous paper,4 the present author discussed the 
circle theorem for an extended Ising model with applica
tions to dilute ferromagnetism. Unfortunately, there 
was given only a partial proof for the circle theorem. 
The present paper gives a quite general proof for it by 
USing Griffiths' reduction techniqueS of higher spin and 
in terms of affine transformations. 

Now, the model we discuss here is given by the Hamil
tonian 

JC = - ~Ji)SiS} - H~S}, J ij ~ 0, (1.1) 

with degenerate states for Sj: 

S} =p, ..• ,p,p-2, ••• ,p-2,···, 
• on ,'" ;r' ' ... 

1 2 

-.p + 2, .•• ,- P + y-;- p, .•• ,- ~, 
'------v . (1. 2) 

n
2 

n1 

where nk (= 0,1,2,'" in1 ;0' 0) indicates the degeneracy 
of the state S) = ± [p - 2(k - 1)]. The. set {nk} may de
pend on the lattice site j (i.e.,nk = n~J»). This model is 
equivalent to a special case of the following Hamilto
nian: 

J ij :2: 0, 
(1. 3) 

where Sj assumes nondegenerate discrete values p, 
p - 2, ... ,2 - p, - p, and ¢ (S}) satisfies the symmetric 
property 

(1. 4) 

[The function ¢(Sj) may depend on the lattice site jj 
¢ = ¢} (5 j )]. The equivalence is assured by the relation 

nk ex: Yk-1 == exp{{3i\¢[p- 2(k -I)]}, (1. 5) 
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with the same proportionality coefficient for all k :2: 1. 

The main results in the present investigations are sum
marized as follows. 

1. The Lee-Yang circle theorem is valid in the follow
ing "triangular" region (A): 

(A) n 1 ~ n2 :2: n3 :2: ••• 

for the Hamiltonian (1. 1) and 

¢(p) ~ ¢(p- 2):2: ¢(p- 4):2:'" 

for the Hamiltonian (1. 3). 

2. In particular, the Lee-Yang theorem holds when 
¢(Sj) is expressed as 4 

(1. 6) 

(1. 7) 

This yields a sufficient extension of conditions for the 
Circle theorem discussed in a previous paper. 4 

3. There occurs a phase transition in the generalized 
ISing ferromagnet described by the Hamiltonian (1. 3) 
under condition (A) and in particular with the potential 
(1. 7). 

In the above Hamiltonian (1. 3) and in particular (1. 1), 
Griffiths-Kelly-Sherman inequalities on spin correla
tions are easily shown to hold as a special case of the 
general results obtained by Ginibre. l4 

In Sec. 2, following Griffiths,5 we investigate a repre
sentation of an Ising particle of spin p/2 in terms of a 
cluster of p spin-t particles interacting among them
selves through ferromagnetic pair interactions. Main 
results derived there are Theorems 1 and 2. Applica
tions of the theorems and some related problems are 
discussed in Sec. 3. In the last section, discussions are 
given on further extensions of the present results. 

2. REPRESENTATION IN TERMS OF SPIN-% 
PARTICLES AND FERROMAGNETIC PAIR 
WEIGHT FUNCTIONS (FPWF) 

A. Recurrence formulas and affine transformations 

Following GriffithS,S we shall write the spin variaole 
S as a sum 

S = 0"1 + 0"2 + ... + 0" p' (2.1) 

where the 0") are "ordinary" Ising variables which 

Copyright © 1973 by the American Institute of Physics 1088 
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assume the values + 1 and - 1. Provided the weight 
function Wp (a l' ... , a p) is properly chosen, we may write 

p 

z:: I(S) S(degenerate) = z:: Wp (q)/(q) 
q=-p 

= z:: Wp(av "" ap)/(a1 + a2 + ... + ap), (2.2) 
{OJ} 

for any function I(S) , where Wp(q) denotes the degeneracy 
of state S = q or plays a role of a partial Boltzmann fac
tor exp[/3Acf.>(q)] in the Hamiltonian (1. 3) except an irrele
vant constant factor. We shall require that the weight 
function Wp({a) be nonnegative, and it must obviously 
have the property 

z::wp({aj})o(taj;q) =Wp(q), (2.3) 
{OJ} ;=1 

for any q which assumes descrete values p, p - 2, ... , 
- (p - 2),- p, where 

6(a;b) = 1, if a = b, 

= 0, if a ~ b. 
(2.4) 

The present Hamiltonian (1. 3) [or (1. 1) with (1. 2)] is 
reduced to the usual Ising model of general spin (and 
consequently the statements 1 to 3 in Sec. 1 result 
immediately from the work by Yang and Lee,l 
Griffiths,5.15 and Kelly and Sherman,16 provided one 
can find a lerromagnetic pair weight function of the form 

Wp(a 1> ••• , a p) =n [t (1 + a i aj ) + i (1 - a i aj)X ij ] 
'<J 

= exp[i 2fKij(ajaj - 1)] (2.5) 
'J 

with 

o === X ij = exp(- K jj) === 1 or 0 === K ij === 00. (2. 6) 

The problem is to find a region W· in which a set of 
FPWF exists. This is, in general, a very complicated 
problem of solving non-linear equations with respect to 
the variables {X ij}' Then, it is convenient to deal with a 
special set of {K i'} which may be expected to cover a 
wide region of W ( That is, all X ij in Eq. (2. 5) shall be 
set equal to 1, except for the following: 

{
Xj for 1 === j === r 

X j ,}+l = 
o for r + 1 === j === p - 1, (2.7) 

where r is defined by p = 2r for p even and p = 2r + 1 
for p odd, and {X j} are parameters in the range 
0=== Xj === 1. Thus, weight functions Wp({aj }) are ex
pressed as 

Wp(a1"" ,ar , 1, 1, •.• ,1) 

== wr (a1, a2' .•• , ar ) 

Wp({aj })= Wp(a1,"" ar ,- 1,- 1, .•. ,- 1) 

= wr (- a1' - a2"" ,- ar ) 

for other configurations. (2. 8) 

Now, the relevant problem is to stUdy the properties of 
{Wp(q)} as functions of parameters {Xj}' From (2.3) 
and (2.8), we have 

Wp(q) = z:: wr({a j }) [o(t aj;r - p + q\ 
{ojl j"l ~ 

+ o (z:: aj ;r - p - q)} (2.9) 
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Clearly, Wp(q) has the symmetry property Wp(- q) = 
Wp(q). For q > 0, it can be written as 

Wp(q) = z:: Wr({aj})o(taj;r - p + q\ (2.10) 
{OJ} }=1 fJ 

In particular one obtains that Wp (P) = 1, and 

"j,(0)=2X r for p=2r, 

Wp(l) = Xr for p = 2r + 1. 

(2. 11 a) 

(2.11b) 

It is convenient to introduce the following functions: 

I?) = Z::wr({ak})o(t ak;r - 2j ) 
{O~ "=1 

= z:: rl X~1-0kOk+l)/2 o(tak;r - 2j\ 0(ar +1; 1), 
{Ok} k=l Ie =1 '} 

(2.12) 

for j = 1, 2, ••. ,r. The functions {!;O,(r)} are related to 
the set Wp(q) as follows. When q> ,we have Wp(q) = 

1«;~q)/2 both for p = 2r and for p = 2r + 1. For p = 2r, 
we have Wp(O) = 2f~r). The first key-point of the present 
argument is to notice the following recurrence relations 
for It): 

1
,('1') = 1,('1'-1) + X f(r~l) 

; J 'I' r-J (2.13) 

for j = 1,2, ... ,r - 1, and 1'1'('1') = Xr for j = r. For con
venience, we use new notations 

x, x =15'1') j ;, 

YJ
' = /;('1'+1) ( ) y, j = 1,2, ... r. 

(2.14) 

Then, the recurrence relations (2. 13) can be written as 

(2. 15) 

where A r (Xr+1) is a linear transformation defined by 

(

1. 
. 1 

o .'{Z (1 + a) 

a' 

(2. 16) 
a •. :) 

1 . 
• '1 

with a = Xr+1' The determinant of this matrix is given 
by 

{

(I - a2}T/2 for r even, 

(1 + a)(l - a2) ('1'-1) 12 for r odd. 
(2. 17) 

Thus, for 0 === a < 1 (i.e., 0 === Xn1 < 1), we have 

(2. 18) 

This implies that the matrix Ar(a) is an affine transfor
mation cp, which has the follOWing properties. 

1. One-to-one mapping: If P ~ Q, then cp(P) ~ cp(Q), and 
the converse is also true. 

2. A hyperplane is projected to a hyperplane, and 
parallel ones to parallel. These properties may be of 
use to visualize proofs given below. 

Delinition 1: Domain:l) 'I' is defined by 

:Dr = {Xl"" 'X r ; Xj =//") (j = 1,2, ... ,r) 

and 0 === Xj === I}, (2.19) 
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where ft) is given by Eq. (2. 12) 

Recurrence relation on !Dr: From the recurrence 
relations (2.13), we have 

!D.,+1 = 01 r!Dr , 

where 01., is a transformation operator defined by 

01., <.t., == {Yl>"" Yr+liY = A.,(Yr+l)x,x E <.t., 

(2.20) 

and O::s Yr+l::S I}. (2.21) 

That is 01 l' transforms a r-dimensional domain <.t., to a 
(r + I)-dimensional region, whose cut perpendicular to 
the Y"+l axis is mapped from <.tr by the affine transfor
mation A.,(a) with a = Yr+l' 

Thus, one arrives at the following result. 

Theorem 1: The domain !D., is given by 

(2.22) 

and 

(2.23) 

This yields the statement 3 in Sec. 1. The transforma
tion 01 l' is expressed more explicitly in terms of the 
inverse matrix of A., (a): 

(

1 -a) "'1 0 a'" 
A;.l(a) = (1 - a2 )-1 0 (1 + a)-l(l - a2 ) 0 

-.a 0 1 .• 
- a" '1 

where the central matrix element (1 + a)-l(1 - a2 ) 

appears only for r odd. Thus, one may write as 

(2.24) 

for O::s Y"+l < 1, or Y.,+l = 1, Yj = Y.,+l-j = Xj + X.,+l_j, 

X E !D.,}. (2. 25) 

Thus, for any value of spin, one can obtain explicitly suf
ficient conditions in which ferromagnetic pair weight 
functions exist and consequently in which the Lee-Yang 
circle theorem is valid. 

For example, we have 

!D 1 = {Yl; 0 ::s Yl ::s. I}, 

!D2 = O!l!D l = {Y1>Y2; O::s Yl::S 1 + Y2 ::S 2 and O::s Y2}' 

!D 3 = 0!2!D 2 = {Yl' Y2, Y3; 0 ::s Yl - Y2Y3 ::s 1 (2.26) 

+ Y2 - YlY3 - y~ ::s 2 - 2y~, O::s Y3 < 1, 

or O::s Yl = Y2 ::S 3'Y3 = I}. 

B. Lemmas on r-dimensional triangular cone and 
affine transformations 

In this subsection, we p~ove lemmas necessary for 
discussing the statement 1 in Sec. 1 (or Theorem 2 in 
the succeeding subsection). 

Definition 2: We define the following domains: 

T (r) -{x x 'l>x >x >···>x > o} - l' ••• , ." - 1 - 2 - - l' - , 

TJr) = {Yl,'" ,Y.,;Y = A., (a)x,x E T(r)}, (2.27) 

s ..... (r) - {y Y . 1 > Y > Y > > Y > a} a - 1,··· t T' - 1 - 2 - ... - y - , 
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where Ar(a) is given by (2.16) with a in the range 
1 ~ a ~ O. 

Lemma 1: For 0 ::s a < 1, one has the relation 

s~r)c Tt). 
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(2.28) 

Proof: The condition that A., (a)x E s~.,) leads to the 
inequality 

(2.29) 

That is, 

(2.30) 

for any j. Similarly, one has 

(2.31) 

For O::s a < 1, the above inequalities (2.30) and (2.31) 
yield the relation 

(2.32) 

In the same way, one can derive 

1 ~ Xl and xr ~ 0, (2.33) 

from the inequalities 

1 ~ Xl + ax r and x., + aXl ~ a, (2.34) 

which come from the condition that A.,(a)x E S~r). Thus, 
we arrive finally at the inequalities 

(2.35) 

Lemma 2: For O::s a::s 1, 

s(r) c T(r) 
a II' 

(2.36) 

Proof: The case 0 ::s a < 1 is an immediate conse
quence of Lemma 1, and the special case a = 1 can be 
checked easily, because the domain S~ .. ) shrinks to the 
single pOint Yl = Y2 = ... = Y .. = 1 for a = 1. 

Lemma 3: 

T( .. +l) C O! .. T("), (2.37) 

where the mapping 01 .. is defined by Eq. (2. 21). 

Proof: First, note that the cut of (r + I)-dimen
sional triangular cone T(r+l) at Y .. +l = a is s~"): 

T( .. +l) = (S~"),a;O::S a::s 1). (2.38) 

Similarly, we have 

01 .. T(r) = (1',,(1'), aj O::s a::s 1). (2.39) 

Since sJr) c T~r) (Lemma 2), it follows from (2.38) and 
(2. 39) that T (1'+1) c 01 r T (r) • 
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C. Sufficient conditions for existence of ferromagnetic 
pair weight functions 

Our aim in this subsection is to prove the following 
theorem. 

Theorem 2: For r = 1,.2, ... , we have 

T(y) C :D
y

• (2.40) 

This implies the statements 1 and 2 in Sec. 1. 

Proof: Clearly, we have 

(2.41) 

Now assume that Theorem 2 is true for r = n. Then, we 
find 

(2. 42) 

Since Q n:D n = :D n+l' we are led to 

(2.43) 

Combining the above relation (2.43) with Lemma 3, we 
obtain 

T (n+l) C :D n+l' (2.44) 

This completes the proof of Theorem 2 by mathematical 
induction. 

Corollary: We have Q y T(y) C :Dy+l' 

The above results are summarized in the following 
statement. The Lee-Yang theorem holds in the domain 
'W: 

and 

'W = {YO,Yl"" Y y_!> 2yy; Y E :Dy} for p = 2S = 2r, 
(2.45) 

where without loss of generality Yo = 1 has been 
assumed. The domain :Dy is expressed in terms of suc
cessive operations Q j: 

(2.46) 

and 

(2.47) 

Here the transformation Q k is defined by Eq. (2.21), and 
Ak(a) is given by (2.16). 

3. APPLICATIONS AND RELATED PROBLEMS 

A. The circle theorem of Lee and Yang 

In §2, for the region 'W given by (2. 45), the Hamiltonian 
(1. 3) has been reduced to the ISing model with ferro
magnetic pair interactions in which Lee and Yang1 
proved that all the zeros of the partition function lie on 
the unit circle of the complex fugacity plane. Then, we 
arrive at the statements 1 and 2 in § 1. 

B. Baker's inequalities 

Using the Lee-Yang theorem and the analyticity of the 
free energy proven from it for the usual Ising-Heisen
berg model, Baker17 has derived the following in-
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equalities on critical exponents 18: 

1I;?:~/(~-y), 11 ;?: ~'/(~' - y'), ~:s~', y:Sy'. 

(3.1) 
Quite in the same way, the above Baker's inequalities are 
shown to hold for the Ising model with degeneracy (1. 2) 
or symmetric potentials in the region'W = {l'Yl"" ,Yy; 
Y E :Dy } for p = 2S = 2r + 1, and 'W = {l'Yl"" ,Yy_!> 
2yy;Y E :Dy } for p = 2S = 2r with the definition (1. 5) for 
Y .• In particular, Baker's inequalities are valid for the 
t~iangular region 

(3.2) 

C. Griffiths-Kelly-Sherman inequalities 

The validity of GKS inequalities for the present system 
is clear from our observation that our system is re
duced to the usual ISing model with ferromagnetic pair 
interactions, in which Kelly and Sherman16 proved the 
inequalities of the forms 

(3.3) 

for H;?: O. In fact, our system is included in Ginibre's 
ones,14 in which he has developed a general formulation 
of Griffiths' inequalities. 

D. Correlation inequalities for antiferromagnets 

Griffiths-Kelly-Sherman inequalities can be easily ex
tended to the following Hamiltonian with antiferromag
netic interactions between two sublattices A and B: 

JC = + ~J~.BS~S-? - ~ J~. S~S~ - ~ J-?S-?SI? 
iEA 'J 'J i,jEA 'J 'J i,jEB 'J , J 

jEB 

- A .2:: <Pj (st) - A ~ <piSf) + .2:: HjSf + .2:: HjSf, 
JEA JEB JEA JEB 

(3.4) 
where 

(3.5) 

and symmetric potentials <Pj satisfy condition 'W, and in 
particular condition (A). 

By using the result pointed out for antiferromagnets of 
spin-~ by Lebowitz19 from the general inequality of 
Fortuin, Ginibre, and Kasteleyn,20 we obtain the follow
ing propositions: (i) For zero magnetic field, we have 
(SA) ;?: 0, and (SB) ;?: 0 if SB is a product of even number 
of spins, and (SASB) :s 0 if SB is "odd"; (ii) for all values 
of the external magnetic field at the different lattice 
sites, we get 

(stst) ;?: (Sf )(st) and (Sf Sf) ;?: (Sf)(Sf) ; (3. 6) 

and (iii) for all values of {Hj }, we have 

if SB is "even", or "odd", respectively, for the Hamilto
nian (3.4) under condition 'W, and in particular condition 
(A). Applications of these inequalities to phase transi
tions of antiferromagnets will be discussed in the next 
subsection E. 

E. Existence of phase transition 

In the Hamiltonian (1. 3), there occur phase transitions 
in two and three dimenSions, because the magnetization 
(Sj) is a nondecreasing function of A in the Hamiltonian 
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(1. 3) for H ;::: 0, and because Griffiths5 has proved the 
existence of the spontaneous magnetization for ~ = 0 
and H = 0. The critical point Tc(~) is also a nondecreas
ing function of ~; 

(3.8) 

Similar arguments are valid even in antiferromagnets 
described by the Hamiltonian (3. 4) under condition (A) 
and in particular (1. 7), because there occurs a phase 
transition in the two-dimensional Ising antiferromagnets 
with nearest neighbor interactions and because spin 
correlations I (S is j > I are nondecreasing functions of 
interactions {J kl } as shown in the previous subsection 
D. (Note that the spontaneous sublattice magnetization 
Ms is defined by M; = lim li-jl-oo (S1st>.) 

4. DISCUSSIONS 

The present paper has discussed the ISing model of 
general spin with degeneracy or symmetric potentials. 
The statements 1 to 3 in Sec. 1 have been proved. In 
particular, our explicit condition (A) for degeneracy or 
symmetriC potentials has the simple physical meaning 
that a spin system described by the Hamiltonian (1. 3) 
with restriction (A) is more ferromagnetic than the 
usual Ising model of general spin (i.e., with degeneracy 
n l = n 2 = n3 = ... or a constant potential <P(P) = 
¢(P - 2) = ... ). Thus, our statements 1 and 2 are phy
sically quite natural results. 

Our explicit condition (A) contains the usual Ising model 
as a special case, for which Griffiths5 has obtained 
more explicit ferromagnetic weight functions. For p 
even, he has found a unique solution in the representation 
(2. 7). However, for p odd, he pOinted out that the solution 
is not unique even if one confines oneselves in the re
presentation (2. '7). These situations are clearly under
stood from our present arguments as follows. The 
usual ISing model corresponds to the special point 
(1,1, ... ,1) in 'W, which is expressed in (2.45) by the 
following set of {Yj} in the domain :.D .. : 

Yl = Y2 = ... = Yr-l = 1 and Y .. = t 
and 

for p even, 
(4.1) 

Yl = Y2 = ... = Yr-l = Y r = 1 for p odd. (4.2) 

Here recall that the domain :Dr is expressed again in 
terms of successive operations a j : 

(4.3) 

The operation a r - 1 is essentially the linear transfor
mation A r-1 (a) defined by (2. 16) with a = Y... From the 
expression (2. 17) for the determinant of the matrix 
A

r
-

l 
(a), it is an affine transformation for p even (i.e., 

for a = Yr = t),hence one-to-one mapping. For p odd 
(i.e., a = Y .. = 1), the determinant of the matrix is 
vanishing, hence there exists no inverse matrix; i.e., 
its mapping is not unique. 

In connection with the present model with degeneracy, it 
may be of use to introduce the following Ising model of 
general spin variable Sj assumes the value 

Sj = av a2 , a3 , ••• , (0), ••• ,- a3 ,- a2 ,- al' 
(4.4) 

where 
(4.5) 
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The Hamiltonian has the usual form (1. 1). We may have 
the following theorem. 

Conjectured Theorem A: The Lee-Yang circle 
theorem is valid for the above model under condition (B): 

(B) 

In more general, we may have the following theorem. 

Conjectured Theorem B: The Lee-Yang circle 
theorem is valid for the Hamiltonian: 

JC = - 'EJijl/l(Si)I/I(Sj) - ~ ~<P(Sj) 

-H'Eh(Sj), J ij ;::: 0, (4.7) 

where Sj takes discrete values p, p - 2, ... ,2 - p, - p, 
and I/I(S), <P(S) , and h(S) satisfy the conditions (C): 

(C) 1. 1/1(- S) = -I/I(S), h(- S) = - h(S) 

and ¢(- S) = <P(S), 

2. OI/l(S) = I/I(S) -I/I(S - 1) and 
(4.8) 

Oh(S) = h(S) - h(S - 1) are nonincreasing 
functions of S for S ;::: 0, 

and 

3. <P(S) is such an appropriate symmetric func-
tion as is defined in the region 'W. 

The following several remarks may be useful to dis
cussions on the above conjectured theorems. 

(a) The model (4.4) may be equivalent to some class of 
the ISing model in which Sj assumes descrete values 
p, p - 2, P - 4, ... ,and their corresponding weights are 
given by 

1,0, ... ,0,1,0, ... ,0,1,0," . , 
~~ 

d l d2 

(4.9) 

respectively [where d v d 2 , • •• denote numbers of zeros 
in the above string (4.9)], under the relation 

(4. 10) 

with On = an - an +1 • 

(b) Condition (B) implies that this system is more ferro
magnetic than the usual Ising model of general spin 
(i.e.,01 = 02 = 03 = ... = 0). 

(c) For "spin S = ~" in the sense (4.4) (the cases S = t 
and S = 1 are trivial), Conjectured Theorem A is easily 
confirmed in more general condition by USing the re
presentation 

(4. 11) 

with c l = t (a l + a2 ) and c2 = t (a l - a2 ). For 
a 1 ;::: a2 ;::: 0, the coefficients c l and c2 are nonnegative. 
Thus, the Hamiltonian has the form 

2 2 

JC =- 'E ~ J i · kl"'k"'l -H'E 'ECk"jk, 
ij k.l=l 1. 1 1 j k=1 

(4. 12) 

with 
(4. 13) 

This yields that the Lee-Yang theorem is valid for the 
Hamiltonian (1. 1) with a1 ;::: a2 ;::: 0, and in particular 
under condition (B). 
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For "general spin S" in the sense (4.4), one may use a 
representation 

(4. 14) 

when r = 2m - 1 , and also r = 2 m - 1 - n, if one uses ferro
magnetic weight functions which give zero weight to 
some 2n states of Sj = ± ah , ... ,and ± a

jn
• [However, 

allowed values of the set a 1 , a2 , ••• , a y are rather 
restricted except for r = 2, and they do not cover con
dition (B).] That is, obviously the Lee-Yang theorem 
holds for such values of the set {a j } as make the re
presentation (4. 14) possible. 

(d) Condition (B) is equivalent to the inequality 

(4. 15) 

under the equivalence relation (4. 10). It is not yet 
clear whether or not this condition (C) is included in the 
domain W discussed in the present paper. Perhaps we 
may have to handle more complex representations in 
order to obtain ferromagnetic weight functions for con
dition (B), or equivalently condition (C). 

(e) The model with unequal separations (4.4) discussed 
above becomes equivalent to a special case of (4. 7) with 
~ = 0 and 

I/J(q) = h(q) = a( p-q+2J/2' (4. 16) 

The present result on the Lee-Yang theorem or its 
generalized proposition that all the zeros of the parti
tion function lie on the imaginary H axis may be also 
true (Conjectured Theorem C) for the following aniso
tropic Heisenberg model of general spin with symmetric 
potentials cf> (S J) satisfying condition (A): 

'tf. '" fJx x x Y Y Y Z Z z) '" ( Z "" =- LJI' ijSjSj +JijSiSj + JijSiS j -~LJcf> Sj) 

- HL,S;, (4.17) 

with J:j ?: IJ~j I, JZ?: IJfj I, and ~ ?: O. It is clear for 

cf>(S;) = (S;)2 from the arguments by Suzuki and 
Fisher. 9 
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It should be also remarked that correlation inequalities 
have been extended to several other systems. 20 •21 

Applications of the present results to alloy problems 
will be discussed in a separate paper. 2 2 
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The equivalence is established between dual pairs of variational functionals (Kohn type) derived from 
the differential equation description of potential scattering and other dual pairs of variational 
functions (Schwinger type) derived from the integral equation description. Apparent differences are 
resolved by suitable choice of trial vector. The Kohn functional and minus the Schwinger functional 
are shown to be duals of each other. 

1. INTRODUCTION 

A not uncommon view! is that differential and integral 
equation descriptions lead to essentially different varia
tional functionals for scattering processes. Dual pairs 
of variational functionals have been derived 2- S which 
provide (under favorable circumstances) upper and 
lower bounds on phase shifts and scattering lengths; 
the pairs of functionals from the differential and inte
gral equation approaches are apparently quite different. 
In this paper actual equivalence of functionals derived 
from the two approaches is demonstrated, apparent dif
ferences being resolved by chOice of trial vector. Fur
ther the dual role of Kohn- and Schwinger-type func
tionals is revealed. Relationships between functionals 
from the two approaches are not new, 6- 10 but these 
particular equivalence and duality properties may not 
previously have been realised. For simplicity only 
potential scattering is considered, but extensions are 
possible. 

2. SCATTERING EQUATIONS 

Scattering at wavenumber k by a short-range potential 
proportional to q(r) gives rise to an lth partial wave 
cp(r) with the differential equation description 

{_£ -k2 + l(l + 1) + q(r)}cp(r) = 0, 0"" r< a:, 
dr2 r2 (ij 

cp(O) = 0, (2) 

¢(r) ~ fr{tan1)1 cos(kr - ~ hr) + sin(kr - ~ l1l')} as r--+ 00. 

(3) 

If q(r) is absent, the solution with proper behavior is 

Popular choices for the normalization constant a are 
1 and l/k, but zero-energy scattering is described by 
the choice k- l,..1 and procedure to the zero-k limit. 

The equivalent integral equation description of cp(r) is 

(4) 

cp(r) + 100

[_ krr'j I(kr )n I(kr ~ q(r')cp(r')dr = cpo(r), (5) 
o < > 

in which j I' n I are spherical Bessel functions and r < ' r> 
denote the lesser and greater of r, r' . 

We think of (1) and (5) as operator equations. LetX 
play the role of the differential operator {- d 2/dr2 -
k 2 + l(l + 1)/r2} and let Q denote multiplication by q(r). 
Then the differential equation (1) takes the form 

(X + Q)¢ = 0, cP E Dif!' (6) 

where 

XCPo = 0 (7) 
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and cp goes to CPo if Q disappears. Likewise if Y plays 
the role of the integral operator with symmetric kernel 
- krr'j I(kr )n I(kr ), the integral equation (5) becomes 

< > 

cP + YQcp = CPo, cp E Dif!' 

or in symmetrized form 

(QYQ + Q)cp = Qcpo' 

Here 

(8) 

(9) 

XY = unit operator (10) 

and 
YXCP = cp - CPo, (11) 

so that Y is only a one- sided inverse of X . 

The real vector space Dif! on which X, Q, and Yare de
fined does not admit the scalar product 

(12) 

because this integral diverges for vectors 4> behaving 
as in (3). However, we are only concerned with scalar 
products of type 

(13) 

where A is an operator like X or Q and the integral in 
(13) exists. Let us define 

(14) 

which is a quantity which vanishes when A is self
adjoint, as when A= Q or A = QYQ. The operator X is 
not self-adjoint, since 

[ 
d<P2 d<P1] 00 

2(<PI,4>2) = - <PI - + <P2 -
dr dr 0 (15) 

is a nonvanishing boundary term. 

The variational functionals discussed below are sta
tionary around the quantity 

- 2(cp, CPo) = (Xcp, CPo> = - (Qcp, CPo) 

= - (cp, Q¢o) = ka2 tan1)I' (16) 

which is of physical interest, being proportional to the 
phase-shift tangent (or generalized scattering length at 
zero k). 

3. VARIATIONAL FUNCTIONALS FOR (Z + DIet> = f 
(Z SELF-ADJOINT) 

A. Basic dual functionals 

Equation (9) is of the standard type 

(Z + Q)CP = t, (17) 

Copyright © 1973 by the American Institute of Physics 1094 
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where Z and Q are self-adjoint operators and Q has an 
inverse Q-1. Associated with (17) are dual variational 
functionals 

J(4)) = (4), (Z + Q)4» - 2(4),1) 

= J(CP) + (oCP, (Z + Q)oCP) 

(18) 

(19) 

and 

G(4)) = - (4), Z4» - «Z4> - f), Q-1(Z4> - f» 

= G(CP)- (ocp,Z6CP)- (ZOcp,Q-1Z0CP), 

(20) 

(21) 

each of which is stationary around the common value 

J(CP) = G (CP) = - (cp,J) (22) 

for variations in 4> = cP + ocp around cP, the solution of 
Eq. (17). The functional J(4)) is just a Rayleigh-Ritz 
functional, and G(4)) can be derived from the Rayleigh
Ritz functional for a new equation obtained by operating 
on (17) with ZQ-1. 

The basic functionals J and G are called dual, or com
plementary, for two reasons. Firstly they provide upper 
and lower bounds 

J(4)) .. - (CP,J) .. G (4)) (23) 

under favorable circumstances, as, for example, when 
Z and Q are each positive operators. Secondly (and 
more fundamentally) they can be derived in a dual man
ner when Eq. (17) is decomposed into a pair of canonical 
Euler-Hamilton equations. 2-5 

B. Schwinger-type functionals 

The J and G functionals for equation (9) are respec
tively the Schwinger 11. 12 functional and its dual. Call
ing them fJ and 9, and setting Z = QYQ,J = Qcpo' we 
obtain for a trial vector l}! 

8(l}!) = (l}!, (QYQ + Q)l}!) - 2(l}!, QCPo) (Schwinger), (24) 

9 (>1') = - (l}!, QYQl}!) - «YQl}! - CPo), Q(YQl}! - CPo» 

(dual Schwinger). (25) 

These functionals are stationary around the quantity 

8(CP) = 9 (CP) = - (CP, QCPo) = ka2 tan1)I' (26) 

[Schwinger's name is often attached to the stationary
amplitude form of (24), i.e. to 8(N) with a8/ at = 0, 
which is - (l}!, QCPO)2(1{t,(QYQ+ Q)l}!)-1. But here we are 
not concerned with special cases of the functionals.] 

4. VARIATIONAL FUNCTIONAlS FOR (X + 0)1/> = 0 
(X NON-SELF-ADJOINT) 

A. Preliminaries 

The scattering differential equation in its operator 
form (6) is not an example of the standard type (17) 
because X is not self-adjoint. However, there is the 
compensation of zero f, and we may still consider the 
J and G functionals which are simply 

J(4)) = (4), (X + Q)4» , 

G(4)) = - (4),X4>) - (X4>, Q-1X4» 

with the property that 

J(CP) = G(cp) = O. 
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Instead of the variational principles (19) and (21) we 
have now 

1095 

J(4)) - J(CP) -X(CP, 4» = (ocp, (X + Q)ocp), (30) 

G(4)) - G(CP) - X(CP, 4» = - (o¢ ,Xocp) - (Xocp, Q-1XOcP) • 
(31) 

As they stand, Eqs. (30) and (31) are not true variational 
prinCiples of the type 

of = F(4)) -F(CP) = O«ocp,oCP», (32) 

since there is insufficient knowledge of the boundary 
term X (CP , 4» which arises because X is not self-adjoint. 

B. Kohn-type variational principles 

To make progress the class of trial vectors is re
stricted so that, for arbitrary l}!, 

4> = CPo - YQl}!. (33) 

Then, like cP, 4> goes to CPo if Q disappears. Further, if 
l}! is an iterative approximate solution of Eq. (8), then 4> 
is the next iterate. This sensible choice of trial vector 
leads to a favorable expression for X(CP, 4». From (7), 
(10), and (33) it follows that 

X4>=-Ql}! 

so that 

4> = CPo + YX4>. 

Thus 

X(cp,4» = (cp,X4» - <Xcp, 4» 

= (CPa + YXcp,X4»- <XCP,cpo + YX4» 

= (X4>, CPa) - (Xcp, CPa) + Y(X4>,xcp). 

Since Y is self-adjoint, the last term in (36) is zero. 
We are left with 

X(CP,4» = S(4)) - S(CP) = oS, 

where 

S(4)) = (X4>, CPo>' 

(34) 

(35) 

(36) 

(37) 

(38) 

The left-hand sides of Eqs. (30) and (31) are now o(J - S) 
and o(G - S), so we have recovered true variational 
principles, namely the Kohn prinCiple (or Spruch-Rosen
berg 12 . 13 at zero k) and its dual. The dual variational 
fundionals 

J(4)) - S(4)) = (4), (X + Q)4» - (X4>, CPo> (Kohn) (39) 

and 

G(4)) - S(cJ» = - (4),X4>) - (X4>, Q-IX4» 

- (X4>, CPo) (dual Kohn) (40) 

are each stationary around the common value (cf. (26)] 

- S(CP) = - (Xcp, CPo> = (cP, QCPo> 

= - ka2 tan1)1 = - 8(CP) = - 9 (CP)· (41) 

Since from (4) and (33) we have 

cJ> ~ a[B cos(kr - ~ [11) + sin(kr - ~ [11)], (42) 
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where 

(43) 

it follows that we may substitute 

(44) 

in the Kohn-type functionals if desired. 

C. Equivalence 

It appears that there are two different pairs of dual 
variational functionals for the quantity - kcx2 tan17I' 
namely the Kohn pair involving the differential opera
tor X, and minus the Schwinger pair involving the inte
gral operator Y (a one-sided inverse of X). But the 
difference is illusory. Substitution for <I> in terms of 
'" from (33) and (34) into (39) and (40) shows that 

(Kohn) J(4)) - 5'(<1» == (<fl, Q<I» + <.X<I>, <I> - Ito) 

and also 

= «ct'o - YQ+), Q(¢o - YQlJI» 

+ «(~"" YQlJI) == - g(lJI) 

(- dual Schwinger), 

(dual Kohn) G(4)) - 5'(<1» == (<fJo - YQlJ!, QlJI) 

5. DISCUSSION 

- (QlJI, lJI) + (QlJI,<fJo) 

= - N, QYQ+) - (lJI, QlJI) 

+ 2N, Q¢o) == - ~(w) 

(- Schwinger). 

(45) 

(46) 

We see that when the trial vectors <I> and ware related 
by Eq. (33), the Kohn variational functional is equivalent 
to minus the dual of the Schwinger variational function
al, and the dual of the Kohn is equivalent to minus the 
Schwinger. The Kohn functional and minus the Sch
winger functional can therefore be regarded as duals 
of each other. Note that although the trial vector w is 
arbitrary, Eq. (33) places a restriction on <1>. This re
striction does not mar the equivalence as it is necess
ary anyway for the existence of the Kohn-type varia
tional functionals. 

Conditions under which Kohn-type and Schwinger-type 
variational functionals provide upper and lower bounds 
on phase-shift tangents and scattering lengths have been 
investigated elsewhere.2-5.9.14 Often it is easier 4. 14 
to establish these bounding properties for Schwinger
type than for Kohn-type functionals. The equivalence 
proved here means that whenever Schwinger-type func
tionals provide upper and lower bounds, so also do the 
Kohn-type (always provided that the respective trial 
vectors are appropriately related). Further in such 
circumstances the Kohn functional and minus the Sch~ 
winger functional will provide dual bounds. 
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In conclusion it is perhaps relevant to remark that the 
equivalence properties established above were sugges
ted to the writer by somewhat similar results which 
are available for the standard equation (17) when the 
self-adjoint operator Z has a two-sided inverse Z-l 
and no boundary terms are inVOlved. Operating on (17) 
with QZ-1, we have 

(QZ-1Q + Q)cb == QZ-lj, (47) 

which is again of standard type. Thus, by analogy with 
(17)-(22), the dual variational fUnctionals 

J(lJI) == (lJI, (41Z-141 + Q)w) - 2(lJI, QZ-lj), (48) 

G(>JI) == - (w, QZ-1Q>JI) - (Z-l(QlJI - f), QZ-1(Q>JI- f» 
(49) 

have common stationary value 

J(<fJ) == G(ct) == - (cp, QZ-lJ) 

== - (Z-lQ<fJ ,f) == (<fJ ,f) - <lZ- lj) (50) 

and lead to the p~r of variational functionals - [J(lJI) + 
<I, Z-lj)] and - [G(lJI) + <I, Z-lj)] for the quantity - (¢,f). 
These apparently new functionals involving Z-l in fact 
satisfy the relations 

J(>JI) + <I,Z-Y; == - C(<I», 

G(lJI) + (f, Z-lJ) = - J(<I», 

where 

Z<I> + QlJI == f. 
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Finite and infinitesimal canonical transformations. 11* 
F. J. Testa 

Atmospheric Environment Service. Toronto. Canada 
(Received 20 November 1972) 

Linear differential equations generating finite canonical transformations are obtained for cases where 
the infinitesimal generator w( q.p) is a homogeneous function of degree a in either one or both 
canonical variables. 

1. INTRODUCTION 

In a previous article, 1 the author discussed the rela
tionship between the finite and infinitesimal represen
tations of a one-parameter subgroup of canonical trans
formations given by 

~ = Q(q,p, T), P = P(q,p, T), 

with q and p denoting canonical variable n-tuples, T a 
real 1-tuple parameter, and where T = 0 corresponds 
to the identity transformation. By using Lie represen
tation theory together with the infinitesimal generator 
w(q,p), canonical transformations of the form (1) are 
obtained through the formula 2 

with 

[(ow a ow a)~ 
T(T) == exp ~ api aqi - aqi aPi r 

(1) 

(2) 

(3) 

and where the summation convention is employed over 
repeated indices. In addition, the operator T(T) satisfies 
the function theorem for Lie representations given by 

T(T)f(q,P) = f(T(T)q, T(T)P) (4) 

for an arbitrary observable f(q,P). Although the more 
lucid Lie representation is convenient from the point 
of view of infinitesimal transformations, the generation 
of finite transformations is not generally straightfor
ward since this requires the evaluation of the formal 
operator T(T) in closed form. 

An alternative method 3 for constructing canonical 
transformations of the form (1) makes use of finite 
generating functions 3'k' explicit in one old and one new 
canonical variable n-tuple. Because the transforma
tions (1) require connectivity to the identity, only the 
functions 3'2(q, P, T) and '.f 3('i,P, T) are of interest, 
generating canonical transformations through the 
relations 

a 3'2 
p(q,r, T) = --, 

all 

03'3 
q(Q, p, T) = - ap , 

(5) 

(6) 

where free indices are suppressed for notational con
venience. The general relation between the above finite 
and infinitesimal representations of the one-parameter 
subgroup of canonical transformations (1) was found l 

to be simply a generalization of the Hamilton-Jacobi 
equation subject to certain boundary conditions. These 
relations for the functions 3'2 and 3' 3 are given by 

a g-2 = W (q, a '.f 2) -= w(a 3' 2 , p), 
aT 0(1 ap (7) 
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(8) 

(9) 

(10) 

Formal integral representations of solutions to the 
above equations for 3'2 and 3'3' analogous to the action 
integral of Hamiltonian dynamics, assume the form 

i T ~ dF. ~ 3'2['i,F] = ~i -' + w('i,P) dT + (lil)i' 
o dT 

(11) 

3'3[~' F) = t (- Pi d'ii + w(<.!, P)\lT - 'l.P •. 
o dT ) 

(12) 

The differential equations (7) and (9) together with (5) 
and (6) provide general prescriptions for obtaining 
closed form evaluations of (2) for a given infinitesimal 
generator w(q,p). However, this procedure can itself 
be difficult because of the generally nonlinear charac
ter of (7) and (9). 

In the present paper, we note that for cases where 
w (q, p) is a homogeneous function of degree G' in either 
one or both canonical variables, additional linear differ
ential equations are obtained for the transformation (1), 
resulting in a procedure possibly preferred over both 
direct evaluation of T(T) and the Hamilton-Jacobi 
method. 

2. PRELIMINARY ANALYSIS 

By treating 3'2 and 3'3 as functions of the original cano
nical variables q and p, direct application of (5) and (6) 
yields the conditions 

( 03'2) (aFi) aq =P+Qiaq , 
p.T P.T 

(a 3'2) = <.! (aFi) 
ap q.T i ap q.r' 

(13) 

(14) 

Using POisson bracket notation defined by 

of ag of ag 
[f,g] == aqi aPi - api aqi' (15) 

we see that suitable linear combinations of (13) and (14) 
give the general differential equations 
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[P, 5'2] + Pi (OP) = 0, 
aPi q. T 

[X, 5'5] + qi(~:') + Pi (~:.) = X, 
, P. T , q. T 

where we have introduced the convenient definition 

(16) 

(17) 

(18) 

(19) 

Although valid in general, these relations are not useful 
unless one of the finite generating functions 5' k is known 
in terms of the original canonical variables q and p. 
However, it is shown in what follows that explicit ex
pressions for 5'2 and 5'3 in terms of q and P are easily 
obtained for cases where w(q,p) is a homogeneous func
tion of degree a in either one or both canonical variable 
n-tuples. 

3. HOMOGENEOUS INFINITESIMAL GENERATORS 

We first consider the special case defined by 

w(>..q,p) = >.. aw(q,p). (20) 

By applying (2), the function theorem (4) and (20) to (11), 
we obtain 

5'2 = f T(T) (-qi ~~ + w(q,P»)dT + q,Pi 

= T(l - a)w(",p) + q,Pi' 

Substitution of (21) into (13) and (16) then yields the 
system of linear equations 

T(l- a)[P,w] + qi(~P) = 0, 
q, P.T 

, (OP;) ow 
'ii a = T(l - a) a' 

q P.T q 

Similarly, for the case given by 

w(q, >..p) = >..aw(q,p), 

we find that 

5'3 == T(l - a)w(q,p) - qiPi' 

(21) 

(22) 

(23) 

(24) 

(25) 

This result together with (14) and (17) gives the equa
tions 

(26) 

(oQ~ ow 
Pi apJ = T(O' - 1) op • (27) 

Finally, for the case defined by 

(28) 

it follows that 

5'5 == T(2 - O')w(q,p), (29) 
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which when substituted into (18) yields 

T(2 - a) [X, w] + qi (~X) + Pi (~pX) = X. 
uq, p. T \'u I q. T 

Solutions to each of the above differential equations 
must satisfy the conditions 

Q(q,p, 0) = q, P(q,p, 0) = p. 

(30) 

(31) 

It is important to note that for certain singular values 
of 0', a = 1 in (20) or (24), and 0' = 2 in (28), the content 
of the cprresponding differential equations is minimal 
and the solution method breaks down. 

To illustrate our procedure for obtaining finite canoni
cal transformations of the form (1) from a homogeneous 
infinitesimal generator w (q, p), we consider the special 
case given by 

w(q,p) = pkql, n = 1. 

Since (32) satisfies (20) with 0' = 1, substitution into 
(22) and (23) yields the equations 

[q + T(l -l)kp k-lql] ap - [T(l -l)lp kql-1] oP - 0 oq op - , 

Q oP == T(l -l)lp k ql-1 
oq 

Integration of (33) subject to (31) using the method of 
Lagrange,4 together with (34) yields the relations 

{

q[(k _l)pk-lql-lT + l)k/(k-l) , 
Q(q,p, T) = (1 1-1 1-1) q exp TP q , 

{

P[(k -l)p k-lql-lT + l]l/(I-k), 
P(q,p, T) == 

P exp(- 1Tpl-lql-l), 

k "" 1, 

k = 1, 

k "" 1, 

k = 1. 

(32) 

(33) 

(34) 

(35) 

(36) 

That the expressions (35) and (36) constitute a canonical 
transformation can be easily shown by verifying that 
they satisfy the fundamental Poisson bracket relation 

[Q, P] = 1. 

Furthermore, since (32) also satisfies (24) and (28), the 
above transformations can be obtained from one of the 
other systems of differential equations. Consequently, 
as can be verified by explicit calculation, the relations 
(35) and (36) also satisfy (26) and (27) with 0' = k and 
(30) with 0' = k + 1. 

The above procedure for obtaining finite canonical trans
formations of the form (1) from a homogeneous infinite
simal generator w(q,p) is amenable to linear methods, 
and therefore may be preferred over both closed form 
evaluation of T(T) and the Hamilton-Jacobi method. 
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Static gravitational fields. II. Ricci rotation coeHicients 
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(Received 6 May 1971; revised manuscript received 14 December 1972) 

Investigations of static gravitational fields in paper I are continued further. Instead of the system of 
second order partial differential equations in I, the equivalent first order system involving the Ricci 
rotation coefficients is dealt with here. The algebraic and the differential dependences among the 
equations have been sorted out to prove that the system is determinate. Then an attempt towards 
classifying this system of partial differential equations has been made. Except for "the potential 
equation" which is obviously elliptic, the remaining system is hyperbolic for which the characteristic 
surfaces have been determined. To obtain some exact solutions the lead of Newman-Penrose is 
followed in constructing the complex linear combinations of the equations. The class of static 
universes where "gravitational lines of force" are geodesics have been found. In this class one 
subclass is transformable to the conformastat metric and the remaining one reduces to a new metric 
involving the gravitational field of an arbitrary number of parallel infinite plates clamped at infinity. 
The source at infinity corresponds to that of the Newtonian potential <p =(J/2)[(m + 1/2)(x')2 
-(l/2){m+ 1/2-(m2 -1/4)'/2} (X2)2 -(l/2){m+ 1/2+(m2 -1/4)'/2} (X3)2]. This metric belongs 
to the nondegenerate Type I of Petrov's classification scheme. Next the class of static universes with 
"shearfree lines of force" is obtained. Here too one subclass goes over to the conforrnastat metric and 
the remaining one reduces to a Weyl-type universe. 

1. INTRODUCTION 

In the study of gravitational radiation, Newman and Pen
rose l have used successfully the method of complex 
Ricci rotation coefficients. Perjes2 has recently applied 
the Ricci rotation coefficients to the stationary fields. 
It is pertinent to ask then what a similar method can 
offer in the more limited area of static gravitation which 
has been partly explored in paper 1.3 Here the static 
gravitational equations have been expressed as first 
order partial differential equations involving the Ricci 
rotation coefficients. But unlike the previous authors 
who usedR ABCD == CABCD as field equations and treated 
the right-hand sides as inhomogeneities compatible with 
Petrov claSSification, here the field equations RAB == 0 
have been used. Furthermore, in the complex combina
tions of the field equations the spinor considerations 
have been discarded in favor of an alternative combina
tion, more suited to the static situation. 

The number of real first order equations derived ex
ceeds that of the unknown functions. But when all the 
algebraic and differential identities are taken into 
account the system turns out to be determinate. 

In the next theorem the system of quasilinear first 
order partial differential equations which are equivalent 
to the static field equations has been classified. The sys
tem turns out to be hyperbolic when the Single 'potential 
equation' is excluded. Characteristic surfaces for the 
hyperbolic equations are found together with the con
straining condition on the Cauchy data prescribed on a 
characteristic surface. 

One of the motivations behind the derivation of the first 
order system is to obtain some exact solution repre
senting a special class of static gravitational universes. 
For that purpose certain complex linear combinations 
have been taken which are not a consequence of spinor 
considerations. Besides that two of the coordinates have 
been chosen to be the complex conjugate coordinates. 

In Newtonian phySics the class of gravitational fields 
with lines of force being straight lines is generated by a 
sphere or an infinite rod or an infinite plate or some 
suitable superposition of these sources. The Einsteinian 
analog of this problem is the class of static universes 
with 'lines of force' being geodesics. This class is 
found by solving the first order system involving com-
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plex Ricci rotation coefficients. It turns out that the 
universe due to a sphere or a rod or a plate (but not any 
superposition) is still in this class and anyone of these 
is reducible to the conformastat form. In addition there 
exists another class without Newtonian analog which is 
transformable to a new metric. This metric phySically 
represents the gravitational universe generated by an 
arbitrary number of parallel infinite plates held together 
at infinity. The mass at infinity corresponds to that of 
the Newtonian potential 

cp = (1/2)[ (m + 1/2)(X1)2 - (1/2){m + 1/2 

- (m2 -1/4)1/2}(x2)L (1/2){m + 1/2 

+ (m 2 - 1/4)l/2}(x3)2]. 

This new metric belongs to the nondegenerate class 
[12,12,12] of Petrov's classification scheme. All these 
results are concisely stated in Theorem 3. 

The next theorem deals with the class of static uni
verses with 'shearfree lines of force'. One subcase 
turns out to be of the conformastat form and the other 
reduces to a Weyl-type metric. 

2. DEFINITIONS AND NOTATIONS 

V 4 denotes a Riemannian universe of events. A point 
x E V 4 has coordinates Xi (i and other Latin indices take 
1,2,3,4). A x4 -constant spatial universe of V 4 is de
noted by V 3 and a point x E V 3 has co-ordinates x a (a 
and other Greek indices take 1,2,3). 

~= - e-w~)gaB(:f)dxadxB + e1D~)(dx4)2. 

The met.!::ic form ¥ = g aB (~)dxa dxB defines a positive 
definite V 3' 

A domain of V 4 is purely gravitational provided the 
Ricci tens~ R ij = 0 there. It follows 3 then in the spatial 
domain of V 3 for a static gravitational V 4' 

- - - 1 
(JaB = RaB + 2W. aW ,8 == 0, 

(F) 
p;: ~2W = 0, 

where comma deno~s part~l derivatives,RaB is the 
Ri~i subtensor of V3 , and 42 is the invariant Laplacian 
in V3 • 
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In addition to this summary of the definitions and nota
tions in the paper3 denoted by I, the following will be 
needed. 

_ Definition 1: An orthonormal triad field A A- a(~) in 
V3 satisfies 

AA-aABa = liAB , 

AAaA A8 = ga8(~)' 
(2.1) 

where liAB is the Kronecker delta and the summation 
convention is followed on the capital Latin labels that 
take 1, 2, 3 except when otherwise mentioned. 

Definition 2: The set of invariants of a tensor field 
,,8'" -

Tro .•. (~) in V3 relative to AA.", are defined to be 

T == A A •• ~ rA 6. 'T a8 " 
AB· ·CD·· Aa B8 "c· D. ro'" (2.2) 

Remark: Because of the bisymmetry of the corres
pondence between tensor components and its invariants 
any tensorial relationship not involving derivatives will 
be preserved in invariants. 

Definition 3: The intrinsic derivative of an invariant 
is defined as follows: 

(2.3) 

Definition 4: The Ricci rotation coefficients are de
fined as 

(2.4) 

where the double stroke denotes covariant derivative in 
~. 

Definition 5: The set of invariants corresponding to 
the Riemann and Ricci tensors in V3 are denoted by 
R ABCD and R AB , respectively. 

3. STATIC GRAVITATIONAL EOUATIONS 
IN TERMS OF THE INVARIANTS 

For the sake of subsequent use, condensed results of six 
known results4 will be displayed below. 

(i) Y ABC = - YBAC , 

(ii) T··· I[AB] + YC[AB] T· 'IC = 0, 

(3.1) 

(3.2) 

where the square bracket around two indices denotes 
antisymmetrization. 1 (The present notation differs from 
that of Schouten by a factor 2.) ChoOSing T" = x" one 
obtains 

(3.2') 

(iii) R ABCD = YAB[CID] + YABMYM[CD] 

+ YMADYMBC - YMACYMBD' (3.3) 

(iv) R ABCD = - R BACD = R CDAB' R A[BCD] = 0, 

R CABC = RAB = RBA> (3.4) 

where the square bracket around three indices denotes 
the cyclic permutation. 1 

(v) R ABCD = liADRBC -liACRBD + liBCRAD 

- R ) - li BDR AC + -eli AC li BD _. li AD li BC , 
2 

(3.5) 
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(vi) (B): RAB[CDIE1=YAM[ERcD]MB-YBM[EllcDlMA 

where y¥ EC == YMEC' 

+ RABM[DY¥EC] - RABM[Dy1!'CE] ' 

(3.6) 

Static gravitational field equations in terms of the in
variants are the following: 

(If): UAB = RAB + i"wIAw IB = 0, 

P =W 1AA + YCAAW IC = O. 
(3.7) 

These follow from (F). But for the present purpose 
equivalent equations-which follow from (4.6) of I, will be 
written below: 

(If''): ClABCD = RABCD + ~(liADWIBW IC - liACW IBWID 

+ liBCw IA WID - liBDW lAW IC) 

+ h;/)IEW IE)(liAC li BD - liAD li Be> = 0, P = O. (3.8) 

Results (3.1)-(3.8) followed from well-known tensor 
equations in Riemannian geometry together with static 
gravitational equations (F) or (F") in I. To simplify the 
field equatiOns th~ congruence Of A Aa will be chosen to 
be normal. In a V 3 this choice can be made without loss 
of generality. This assumption brings in the following 
simplifications: 

AA" = U(A)fA,a (A not summed), 

YABC = 0, (A,B,C ;>!), 

(N): YLPPIR - 'YRPPIL + YRLLYLPP- YLRRYRPP= 0, 

(3.9) 

(3.10) 

(no summation and L, P,R ;>!). (3.11) 

Making the coordinate transformation x'l = f1 (~), x'2 = 

f2(~)' x'3 =f3(~) and dropping primes subsequently, 
(3.9) goes over to 

(3.12) 

A more convenient nomenclature will be introduced in 
the following: 

U = UW ' V = U(2)' W = U(3), (3.13) 

a = Y121' b = Y122' l = Y131' n = Y133' 

S .= Y232' t == Y233' (3.14) 

From definitions one obtains 

(

U2 0 0) 
(gil") = 0 V2 0 , 

o 0 W2 
UVW> 0, (3.15) 

T .,. 11 = U-1T •••• 1> T •.• 12 = V-1T .··.2' 

T , •• 13 = W-1T •••• 3. 

Putting (3. 12)-(3. 15) into (3.8), (3.2'), (3. 11) one gets, 
respectively, 

(!"): U- 1b. 1 - V-1a ,2 + a2 + b2 + ls 

+ HU-2w2 + V-2 w 2 - W-2W 2) = 0 (3. 16a) ,1 ,2 ,3' 

U- 1n,l - W- 1 l,3 + l2 + n 2 - at 

+ ~(U-2w,1 - V-2 W,22 + W-2W,~) == 0, (3. 16b) 

v- 1t ,2 - W- 1S,3 + s2 + t2 + bn 

+ 1.(_ U-2w 2 + V-2W 2 + W-2W~) == 0, (3. 16c) 
4 ,1 ,2 • 
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V- ln.2 + ten - b) + iU-1V-1WnW,2 = 0, 

U-lt + n(a + t) + .!.U-IV-Iw W = ° .1 2.1.2' 

W- 1a.3 - lea + t) - ~V-IW-IW.2W,3 = 0, 

V- 1 l,2 - a(l - s) - ~V-IW-IW.2w.1 = 0, 

U-Is. I - bel - s) _!-W-IU-lw.aw. 1 = 0, 

W-1b.3 + sen - b) + ~ W-IU-IW. 3W. 1 = 0, 

p :::: U-2W•ll + V-2w,22 + W-2W. 33 
+W,I(U-I(U-l),l + b + n) 

+ W,2(V-l(V-I),2 + t - a) 

+ W,3(W-l(W-l),3 - l- s) = 0, 

(M): (InU).2 = - aV, 

(lnU),3 :::: -IW, 

(lnV),l = bU, 

(lnV),3 = - sW, 

(lnW),2 := tV, 

{lnW),l :::: nU, 

(N): W-I a,3 - V- I l,2 - tl- sa :::: 0, 

W- I b,3 + U-Is,1 -lb + ns = 0, 

U-It. l - V- In.2 + bt + an:::: O. 

(3. 16d) 

(3. 16e) 

(3. 16f) 

(3. 16g) 

(3.l6h) 

(3. 16i) 

(3.16j) 

(3.l7a) 

(3. 17b) 

(3.l7c) 

(3. 17d) 

(3. 17e) 

(3. 17f) 

(3.18a) 

(3.l8b) 

(3. 18c) 

The system of partial differential equations (3. 16a)
(3.18c) has 19 equations in 10 unknown functions. But 
there exist 9 identities (algebraic and differential) which 
make the system determinate. (N) is satisfied identi
cally by algebraic combinations of (3.16d)-(3.16i). (M) 
and the 3 integrability conditions of (M) imply 3 equa
tions obtainable by the algebraic combinations of 

- V- I <P,2 0 

U- 1<p,l 0 

0 - W-I <p,3 
A == AUtp,1I = 

0 U-I<P. I 
0 0 

0 0 

Now the characteristic determinant 

det(A) = 0 =:> tp,ltp.2f1J,3 = O. 

0 

0 

0 

0 

- W- I <P.3 
V- 1 <P,2 

(3.21) 

The above condition shows that the system is hyperbolic. 

From (3.21) one concludes that for a surface S: tp = 0 :3 

tp,a ;of O(a == 1,2,3), det(A) ;of O. On S however u!"tp,a -
u i atp " is an interior derivative. Hence u a is known in 
S'from the data if u,a is known. MultiplylDg (3.19) by 
tp,,, one has 

tp."L(u) = ABtp,Bu,,, + i" = Au,,, + la = 0, (3.22) 

where I" is an interior derivative on u in S. Hence under 
the condition det(A) ;of 0 the system (3.22) of linear 
equations for the vector u,,, determines it uniquely. 

The condition (3.21) under the restriction fIJ.afIJ, " > 0 
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(3. 16d)-{3. 16i). In (3''') there exist three differential 
identities which are related to the Eqs. (3. 5). This 
accounts for 9 identities. Therefore, the system is deter
minate. 

Now an attempt towards the classification3 of the system 
of quasilinear partial differential equations (3. 16a)-
(3. 18c) will be made. In this discussion the potential 
equation (3.l6D which is obviously elliptic, will be ex
cluded. The remaining first order system is equivalent 
to the usual second order field equations in orthogonal 
coordinates. Remembering this fact,5 independent equa
tions that have to be chosen from the system (3. 16a)
(3.l8c) are (3. l6a)-(3. 16c) and (N). Now the theorem 
regarding the classification can be stated below: 

Thearem 1: Let the Ricci rotation coefficients a, b, I, 
!!Is,t be of Cl and D, V,W of C2 with UVW > 0 inQ C 

V3 • 

(i) Then the system of first order quasilinear partial 
differential equations (3. 16a)-(3.16c), (3. 18a)-(3.18c) 
is hyperbolic. 

(ii) If a surface tp(xl , x2, x3) = 0 is such that tp " ;of 0 
(a::: 1,2,3), then from arbitrarily prescribed Cauchy 
data on the surface the derivatives a, ", •••• t ," can be 
uniquely determined. 

(iii) If a surface tp = 0 is such that anyone or two (not 
three) of tp a is zero than it is a characteristic surface 
of the system of partial differential equations. More
over,3 is a differential relation which restricts the 
Cauchy data on such a surface. 

Proof: Defining [u l ,u2 , ••• , u6 ] = fa, b, ••• , t] the 
system of differential equations can be written as 

L.(u i ) = a ij ,lIu i " + bi = 0, i,j = (1, ••• ,6) 
] ,-

or (3.19) 
L(u) = AIIU,v + b == 0, 

where the matrix All = (a ii, v) and the vector b = fbi] do 
not depend on the derivatives u~ '" . 

For a surface S: tp(xl, x2, x3 ) == 0, fIJ."tp,,, > 0, the 
characteristic matrix is5 

0 W- I <P,3 0 

0 0 W- 1<P,3 

0 - V-1 <P,2 0 

V- I <P,2 0 0 

0 0 U-I<P,l 

- U-1<P,l 0 0 

(3.20) 

gives a characteristic surface So. Now the condition 
det(Al :::: 0 =:> 3 v(x l , x2, x3 ) :1 Av = 0. Multiplying (3.22) 
by v' yields an equation 

vitp,aLj(u) = ViSia = 0, 

expressed by an interior differential operator on the 
data along So; this operator ViSt" does not contain u!". 
Thus ViS,,, = 0 is a differential relation which restricts 
the initial values of u' on So. 

4. COMPLEX CONJUGATE COORDINATES 
AND COMPLEX ROTATION COEFFICIENTS 

For the purposes of obtaining a solution, the system of 
partial differential equations (3. 16a)-(3. 17f), one intro
duces complex conjugate coordinates, complex Ricci 
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rotation coefficients, a suitable triad and three suitable 
coordinate conditions. 

The triad field will be chosen such that the congruence 
of "la is normal to the surfacewC~). This would imply 
that 

"la = UW,a' 

")'123 = ")'132' 

(4.1) 

(4.2) 

Congruences "2';-, "3';- are chosen to be the first and 
second normal respectively to the congruence "1';- f' lines 
of force"). This choice introduces the simplification 

")'131 = 0. (4.3) 

The three COOrdinate conditions to be imposed are 

W = xl, 

i 23 = 0, (4.4) 
- -
g22 =g33' 

The first choice implies that "la = U0 1a and the two 
other choices are made to simplify the Eqs. (3. 8). 

The following linear combinations of ")' ABC in the complex 
field will be made: 

A == (1/2)1/2")'121> 

{:J == (1/2)(")'122 - ")'133) + i">'123' 

H == (1/2)(">'122 + ")'133)' 

U == (1/2)112(")'233 - i")'232)' 

p == - i")'231" 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Here and subsequently capital Latin letters will indicate 
real valued and Greek letters indicate complex valued 
functions. Geometrically, (2A)l/2ip,{:J,H indicate respec
tively first, second curvature, complex shear, and diver
gence of the "lines of force". 

Furthermore, a formal transformation to complex con
jugate coordinates4 will be made by 

Z2=x2 +ix3, 

Z2 = x2 - ix3• 
(4.10) 

It should be mentioned that a coordinate transformation 
of the type 

X'l = Xl, 

z'2 = f(x1,z2), 

Z'2 =f(x1,z2), (4.10') 

where f(x 1, z2) is analytic with respect to z2 and the bar 
denotes complex conjugation, does not disturb the co
ordinate conditions implied in (4.4). 

Because of (4.4), (4.10) the complex triad field in com
plex coordinates must be of the following form: 

"la = U(x1,z2,z2)Ola, (4.11) 

A1~ == "1': = U- 161': + 71 (xi, Z2, z2)62~ + fj6 2';-, (4.12) 

A2~ == (1/2)112("2~ + i"3';-) = E(xl, z 2,Z2)02':' (4.13) 

Ai';- == (1/2)112("2~ - i"3~) = Y62~' (4.14) 

where Greek indices now take 1,2, 2. 
Remembering (4.2), (4. 3),w = xl, and plugging (4.5)
(4.9), (4. 11)-(4. 14) into (3.8), (3.2') and taking certain 
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complex linear combinations of the resulting equations 
one obtains the following system: 

(5'): EA,2 - U-1{:J,l - 71{:J,2 - ij{:J,2 

+ 2{:J(p - H) - A(A + u) = 0, (4. 15a) 

Ep,2 - U-1U,l - 7W,2 - iju,2 -H(A + u) 

+ p(a -A) + (:J(A + a) = 0, (4. 15b) 

U-1H,l + 71H,2 + ijH,2 - EA,2 +H2 + 1{:J12 

+ A(A - u) + U:-2/4 = 0, (4. 15c) 

"f{:J,2 - m,2 + 2{:Ja = 0, (4. 15d) 

Ea,2 + "fa,2 + 21al 2 +H2 - 1{:J12 - U-2/4 = 0, 
(4. 15e) 

U-1(lnU) ,1 + 77 (InU) ,2 + 77 (InU) ,2 - 2H = 0, (4. 15f) 

(M): E(lnU),2 + A = 0, (4. 16a) 

U-1E,l + 77E,2 + ijE,2 - E77,2 + A71 + rp - p)E = 0, 
(4. 16b) 

Eij,2 -Aij - {:J"f = 0, (4. 16c) 

Y~,2 + aE = 0. (4. 16d) 

Besides these isothermic conditions4 should have been 
considered which are fortunately satisfied by (4. 15f), 
(4.16a). 

5. THE CLASS OF STATIC GRAVITATIONAL 
UNIVERSES WHERE 'LINES OF FORCE' ARE 
GEODESICS 

In case that "la defines a geodesic congruence (meaning 
"lines of force" are geodesics), the choice of "2a,"3a 
as the first and second normal [cf. after (4.2)] becomes 
meaningless. In such a case, it would be convenient to 
fix the real triad field by parallely propagating "2a' "3 a 
along geodesics generated by "la' This chOice would 
imply that ")'121 = ")'131 = ")'231 = O:::::>A = p = 0, the Eqs. 
(4. 15a)-(4. 16d) would yield the following system: 

(5'0): U-1{:J,l + 71{:J,2 + ij{:J,2 + 2H{:J = 0, 

U-1u,l + 71a,2 + ijU,2 + Hu - {:Ja = 0, 

U-1H,l + 71H,2 + TjH,2+H2 

+ 1{:J12 + U-2/4 = 0, 

"f{:J,2 - m'2 + 2{:Ja = 0, 

"fa ,2 + Ea ,2 + 21 U 12 + H2 - 1 (:J 12 

- U-2/4 = 0, 

(lnU) ,1 - 2HU = 0, 

(Mo): (InU) ,2 = 0, 

U-1E,l + 71E,2 + ijE,2 - E77 ,2 + H~ = 0, 

Eij ,2 - {:JY = 0, 

YE,2 + aE = 0. 

(5.1a) 

(5.1b) 

(5.1c) 

(5. 1d) 

(5.1e) 

(5.1£) 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

The general solution of the above system of the partial 
differential equations will be obtained presently. 

Theurem 2: Let static field equations (~) be valid in 
Dc V3 • Let the vector field w a/(a1w)1/2 be defined and 
generate a geodesic congruenc'e in D. If, moreover, (i) 
{:J ;of 0 (nonvanishing shear) then in the corresponding 
open cylinder of V4 the metric form must be trans
formable to 

4> = - a-2e-(2m+uxl{a-2e-2mxl(dx)12 + Idz 

_ [(m2 -1/4)1/2z + o (x1)]dxlj2} + e s1 dx42, 
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where a '" 0, m 2 > (1/4) are real constants and z = x 2 + 
ix3 and 0(x1) is an arbitrary complex valued function of 
Xl. 

In the case (ii) corresponding to f3 = 0 the metric forms 
go over to conformastat cases.3 

Proof: From the discussions of previous sections, it 
is clear that in the domain D the Eqs. (5.1a)-(5. 2d) have 
to be satisfied. Therefore, firstly, the general solution of 
this system has to be obtained for the case (i) corres
ponding to f3 '" O. 

By (5. 2a), (5.1f), (5. 1c) one obtains 

U = U(x1), 

H = H(x1), 

1f31 = B2(X 1). 

(5.3) 

(5.4) 

(5.5) 

From (5. If) and the real part of (5. 1a) it follows that 

B2 = kU-1, 

where k > 0 is a real constant. 

By (5.6) the Eq. (5. 1c) becomes 

U-1H' + H2 + (k2 + i)U-2 = 0, 

(5.6) 

(5.7) 

where the prime denotes the differentiation with respect 
to the argument Xl. The general solution of the coupled 
equations (5.1f) and (5.7) is the following: 

U-1 = (ae mxl - be- mxl)2 > 0, 

H = - m(a2e2mxl_ b2e-2mx\ 

m 2 = k 2 + (1/4) > (1/4), 

(5.8) 

where a, b are real constants of integration. From (5. 6) 
it follows that 

(5.9) 

Eliminating a by (5.2d) and noting ~ '" 0, f3 '" 0, H,2 = 0 
the Eq. (5. 1d) yields 

This can be readily integrated to obtain 

f3~-2 = X2(X1,z2). 

(5. 10) 

(5.11) 

Here X(x 1, Z 2) '" 0 is otherwise an arbitrary analytic 
function of z2 and sufficiently differentiable inx 1 • 

Now making a coordinate transformation of the type 
(4. lOa) 

X'l = xl, 

z'2 = X(xl, z 2), 

Z'2 = X(x 1,z2), 

and dropping primes subsequently one has 

fJ~-2 = (z2)2, 

f3 = B2(z2/Z2)e,2iS<x1,z2,zZ" 

~2 = B2Iz21-2e2is, 

(5.11') 

(5.12) 

(5.13) 

where s = arg~. With (5.12), (5. 13), (5. 2d) the Eq. (5. Ie) 
boils down to the Simple condition 
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abm 2 = O. (5.14) 

Because m 2 > (1/4) one has to choose either a = 0 or 
else b = 0 (the case a = b = 0 makes U singular). Both 
of these cases can be simultaneously taken care of by 
putting 

U-1 = a2e2mx\ 

H = - ma2e2mxl, 

{3 = (m 2 - (1/4»1/2a2e2mXl(z2/z2)e~iS, 

~2 = (m2 _ (1/4»1I2a2e2mxllz21-2e,2iS 

where a '" 0 is a real constant. 

Now writing 

1] = (m 2 - (1/4»1I2a2e2mxl~(xl,z2,z2), 

(5.15) 

(5.16) 

and plugging in (5.17), one can solve (5.2c) to obtain 

~ = (Z2)2/2z2 + r(xl,z2)/z2, 

rex 1, Z 2) being arbitrary analytic function of z 2 • 

Inserting the imaginary part of (5. 1a) 

2a2e 2mxl [ s,l + kHs,2 - i(z2)-1/2) 

(5.17) 

+ k~(S,2 + i(z2)-2/2)] = 0 (5.18) 
into (5.2b) one gets 

(Z2~),2 = O. (5.19) 

From (5. 17) and (5. 18) it follows that 

r = 0(X1), (5.20) 

where 0(x1) is an arbitrary function of xl and thus 

1] = (m 2 - (1/4»1/2a2e2mxl(z2)-1[(.z2)2/2 + 0(X1)]. 

(5.21) 

One need not solve (5. 18) because s does not contribute 
in the metric form. The eq. (5. 16) is identically satis
fied by (5.15), (5.21). 

Substituting (5.15), (5.21) into (4.12)-(4.14) and obtain
ing gcxB = A1~A1~ + A2~A2~ + A2~A2~ the metriC form 
comes out to be 

<p = _ a-2e-<2m+D%1[a-2e-2mxldx12 

+ (m 2 - i)-1I2/z 2 1
2 /dz 2 - (m2 - t)1I2 

X (Z2)-1{(z2)2/2 + 0}dx l I2] + e xl(dx4)2. 

Making a coordinate transformation 

X'l = xl, 

z'2 = (z2)2/2(m2 - 1/4)114 

z'2 = (z2)2/2(m 2 - 1/4)114 

0' = 0/(m 2 - 1/4)1/4, 

(5.22) 

and dropping prime the case (i) of the theorem fOllows. 

In case (ii) corresponding to fJ = 0 the Eqs. (5. 1a)-
(5. 2d) reduce to the following: 

U-1a ,l + 1]a,2 + 1ja,2 + Ha = 0, 

U-1H,l + TjH,2 + 1jH,2 + H2 + U-2/4 = 0, 

~H,2 = 0, 

(5. 23a) 

(5. 23b) 

(5. 23c) 
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2:0.2 + 2:(7.2 + 2101 2 + H2 - U-2/4 == 0, 

(InU),l - 2HU == 0, 

(InU).2 = 0, 

U- 1L.. 1 + 1IL.,2 + i/2:,2 - 2:11,2 + HL. == 0, 

~,2 = 0, 

~L. ,2 + (7L. = O. 

(5. 23d) 

(5. 23e) 

(5. 23f) 

(5. 23g) 

(5. 23h) 

(5. 23i) 

The general solutions of (5. 23b), (5. 23c), (5. 23e), (5. 23f) 
are 

U-l == (aexl12 _ be-xl12)2, (5.24) 

H = - (1/2)(a2ex1- b 2e-X1 ), 

where a, b are real constants and it is assumed that 
u- 1 > 0 in the domain of consideration. 

The Eq. (5. 23h) can be solved to obtain 

1j = U- 1f (x 1, z 2). 

Making a transformation 

X'1=X 1 , 

Z'2 =f(xl,z2), 

Z'2 = f(x1, z2), 

and dropping primes subsequently one gets 

1}=U-lz2. 

(5.25) 

(5.26) 

Without any loss of generality one is permitted to put 

(5.27) 

where S, S are real valued functions of xl, z2, Z2, 
By (5.26), (5.27) the real and imaginary parts of (5. 23g) 
yield, respectively, 

S + z2S,2 + z 25,2 = 1, 

S + Z2Z,2 + Z 2S.2 == O. 

(5.28) 

(5.29) 

The general solutions of these first order, linear, partial 
differential equations obtainable by the method of char
acteristic curves5 are 

T[S - x, z 2e-x, z2e-X] == c, 

s = t(z2e-x, z2e-X). 

(5.30) 

(5.31) 

Here c is any real constant and T, t are arbitrary C2 -

functions of its arguments. 

Now using (5.24) and (5. 27), the Eq. (5. 23d) gives 

S,22 == (ab/2)e-2S • (5.32) 

Here three separate cases (i) ab > 0, (ii) ab < 0, (iii) 
ab == 0 have to be considered. In case ab > 0 the general 
solution of (5.32) is6 

S == In[(l + I 1/1 (x 1, ~) 12 )/11/1" I), 
~ == (ab/2) 112z 2, 

(5.33) 

where 1/1 (x 1, ~) is an arbitrary analytic function of ~ such 
that 1/1" "" 0 in the domain of consideration. 

1104 

The solutions (5. 30), (5. 33) are compatible provided 

1/I(x 1, (ab/2)1I2z2) = 1/I«ab/2)1I2z2e-Xl). (5.34) 

Equation (5. 23a) is identically satisfied by (5. 24)- (5. 34). 
Therefore, in this case the metric form of V4 becomes 

~=-e-xl[U2(dxl)2 + 2u11/I" 12(1 + 11/I12)-2Idz212] 

+ e X1(dx4)2, (5.35) 
U-1 = (aexl12 _ be-xl12)2. 

Making a coordinate transformation 

X'1 == xl, 

Z' = 2(ab)-1121/1«ab/2) 112z 2e-X1) , 

z, = 2(ab)-1121/1, 

and dropping primes subsequently (5.47) goes to 

~ = - e-X1[U2 (dx 1)2 + U(l + (ab/4) Iz 12)-21 dz 12] 

+ e X1(dx 4)2. (5.36) 

Comparing the above metric with the case (B) of 
Theorem 8 in paper I it is obvious that (5.36) is trans
formable to the Schwarzschild's case. Similarly, for the 
cases ab < 0, ab = 0 the metric can be reduced to the 
other two conformastat forms. Thus part (ii) of the 
theorem is proved. 

Remarks: The metric form exhibited in the preceding 
theorem is a new solution and therefore requires closer 
examination. The metric is Singular at xl = ± 00, x 2 == 
± 00, x3 = ± 00 and at the singularities of the arbitrary 
function O(xl). Physically this metric can be regarded 
as being generated by "arbitrary number of plates 
parallel to x 2 - x3 plane which are clamped at infinity" 
But more information about 'sources at infinity' can be 
obtained by putting 0 (x 1) = 0, a == 1. The resulting 
metric then is nonsingular at every finite point and re
duces to the Minkowskian form at the origin. There the 
three surviving components of Riemann tensor are given 
by 

(R 1441)o = m + 1/2, 

(R2442)O = - (1/2)[m + 1/2 - (m2 - 1/4)112], 

(R3443 )O = - (1/2)[m + 1/2 + (m2 - 1/4)1121. 
Now Synge7 has arrived at a relation between the Rie
mann tensor and the corresponding Newtonian potential 
rp by the following prescription 

i j k I 
rp,a.8 = Rjjkl~(a.)~(4)~(4)X(8)' 

where ~~) is an orthonormal tetrad. Comparing the 
above relation with the Riemann tensor of the universe 
under conSideration one can conclude that the corres
ponding Newtonian potential is 

rp = (1/2){(m + 1/2)(x 1)2 

- (1/2)[m + 1/2 - (m 2 - 1/4)1I2](x2)2 

- (1/2)[m + 1/2 + (m 2 - 1/4)1/2](X3)2}, 

and this provides some insight into the "sources at 
infinity." From the well-known inversion theorems of 
the classical potential theory it can be deduced that 
this field can also be regarded as being generated by a 
quadrupole at the origin with the moment tensor 

[

(1/2)(m + 1/2) 0 0 ] 
Q = [Qa.6] == 0 - (1/4)[m + 1/2) - (m2 - 1/4)112] 0 

o 0 - (1/4)[m + 1/2 +(m2 - 1/4)112] 
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The original Petrov classification of the gravitational 
universes hinged on two symmetric, traceless matrices 
M, N each of size (3 x 3). In any static case N:::: 0 and in 
the present situation M :::: Q. Therefore, the universe 
under consideration falls under the class [12, 12, 121 of 
the type I. 

In this universe there are no finite boundaries along 
X2, x 3 , x4 -coordinate lines. Assuming m > 1/2, along 
negative x 1 line it is open but on the positive x 1 line 
there is a boundary at a finite distance. 

Another special class of solutions will be exhibited in 
the following theorem. 

Theorem 3: Let static field equations (5') prevail in 
p.. c V3 • Let the congruence W. ex be shearr"ree [f3 :::: (1/2) 
(Y122 - Y133) + iY123 :::: 01. (i) If, moreover, the con
gruence has nonvanishing first curvature (A ;o! 0) then in 
the corresponding open cylinder of a nonflat V4 the 
metric form can be reduced to the Weyl-type solution 

<I> = - e-X1[e<k-<x2)2)/4«(dxl)2 + (dx 2)2) + (X 2)2(dx3)2] 

+ eX1 (dx4)2, 

k being any real constant. 
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(ii) In case A = 0 besides i3 = 0 the metric forms go 
over to conformastat cases. 
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A rigorous formulation of the connection between nonergodicity (degeneration) of the motion of a 
Hamiltonian system and existence of global constants of motion (isolating integrals) is proposed. 
Necessary and sufficient conditions for the occurrence of a properly defined kind of complete 
degeneration are given. Finally, a wide-spread opinion is criticized about the mutual implications 
between complete degeneration and separability of the Hamilton-Jacobi equation in more than one 
coordinate systems. 

1. INTRODUCTION 

The purpose of this paper is to give a unified present
ation of the concept of isolating integral (see Ref. 1 
Chap. II, Sec. 119) for a Hamiltonian System. 

It is well known in general dynamics that while a 
dynamical system with n degrees of freedom always 
admits 2n - 1 local constants of motion, a distingui
shing role is played by those time-independent first 
integrals f(qP) which are global constants of motion, 
defined throughout the phase space. It is essential, 
roughly speaking, that the equationf(qp) = const does 
define a true hypersurface in the phase space of the 
system 02n' so that it can be used to decrease the 
dimension of the submanifold of ~n where the phase 
trajectory is situated. However, little is known of how 
many global integrals of motion an arbitrary system 
possesses. Since Bruns and POincare,2 a number of 
negative theorems can be found in the literature about 
the existence of "algebraic" or "uniform" integrals 
of motion for a generic Hamiltonian system; but, as 
Wintnerl stresses, all these elegant negative results 
of arithmetical type do not have any dynamical signi
ficance since the "algebraic" or else "single-valued" 
nature of an integralf(qp) cannot provide an exhaus
tive characterization of the very meaning of "isolat
ingness." Important theorems (Kolmogorov-Arnol'd3 ) 

have been proved recently about the existence of 
global constants of motion for analytic Hamiltonians 
which are close to "integrable systems", i.e., systems 
admitting action-angle variables. However, strangely 
enough, there seems to be no generally accepted and 
detailed definition of what an isolating integral actu
ally is. No matter how familiar this concept may be 
to the specialists in general dynamics and statistical 
mechanics, we have not yet seen it explicitly charac
terized. As a matter of fact it appears that this notion 
enters the discussions mainly at an operative level. 

The motivations of our attempt for an explicit defini
tion of isolating integrals lie in our particular point 
of view about this matter. It is clear that, independ
ently of any rigorous definition, the lack of existence 
of isolcating integrals beside the energy and the usual 
"external" integrals,such as linear momentum and angu-
1ar momentum, should be considered not as an "excep
tional" but rather as the "general" case. Thus, stati
stical mechanics deals in general with systems which 
do not possess isolating integrals other than those 
above, corresponding to the relevant kinematical 
symmetry group (Galilei or Poincare). Instead, we 
will be concerned with just the opposite Situation, 
namely with the cases in which there exist suffici
ently many isolating integrals to cause what is known 
as a degeneration of the motion. This is why we are 
especially interested in questions of dynamical sym-
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metry and in the problems of intrinsic quantization4,5 
via dynamical symmetries. It is well known that the 
degenerate multiperiodic motions played a relevant 
role in the ancient Quantum Theory6 and yet the 
great majority of the first quantized Hamiltonian 
solvable models have classical counterparts which 
are degenerate systems. It is very likely,also at a 
heuristic level, that an intrinsic, coordinate-indepen
dent, quantization procedure can be established in 
general only for highly symmetrical systems, admitt
ing a maximal dynamical symmetry group or even a 
"noninvariance" dynamical group. Such systems have 
the remarkable property that all the orbits on a given 
energy surface are diffeomorphic one to another;in 
particular, every orbit is closed, as a submanifold, if 
a single one is;in such a case the system is every
where 'completely degenerate. For this reason we 
will not discuss a generic partial degeneration but we 
will focus our attention on the extreme situation of 
maximal or complete degeneration. This means also 
that the present paper should be read as a prelimin
ary technical step in view of a more general program 
of investigation. Anyway, the definitions we propose 
are valid in themselves and a number of theorems 
about partial degeneration could easily be derived as 
well. In particular, we give here a definition of de
generacy which is more general than the usual one in 
that it is not confined to "bounded" systems;this also 
is in view of group-theoretical considerations. 

This paper is intended for physicists. However, the 
exposition of the matter necessarily requires the 
language of modern differential geometry and the 
reader is supposed to be familiar with the fundamen
tals of this discipline. (A brief introduction to the 
mathematical concepts involved in this paper can be 
found in the Appendix.) As already pointed out by 
Wintner,l the approaches based on classical "arith
metical" methods, which are coordinate dependent, 
seem rather limited in generality and power of in
sight; moreover, they are usually developed starting 
from assumptions of analyticity7 which are not 
strictly necessary and which severely restrict the 
range of physical considerations;yet the matter it
self fits naturally with the more general domain of 
C(OO) differential geometry. Questions of analyticity 
will possibly become relevant in the sequel when 
dealing with the quantum side of these problems. 

The main points of the paper are the following: 

(a) preliminary definition of local and global degener
ation (with particular emphasis on complete degener
ation): Defs. 2.1. and 2.2; (b) definition of isolating 
functions and isolating set of functions: Defs. 2. 3. 
and 2.4; (c) SUfficient criteria for complete degener
ation: Theorem 2.1; (d) characterization of isolating 
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functions and sets: Theorem 2.2; (e) formulation of 
the problem in terms of a new, more refined, defini
tion of regular degeneration and a g~neralized concept 
of isolating integrals: Defs. 3.1., 3. 2.,and 3.3., 
Theorems 3. 1., 3. 2., and 3. 3; (f) mutual implication 
between regular degeneration and isolating integrals 
(in the generalized sense): Theorem 3.4;(g) criticism 
of a widespread opinion about the connection between 
degeneration and multiseparability of the Hamilton
Jacobi equation: Sec. 4. (h) a list of the symbols, de
finitions and theorems in differential geometry used 
throughout the paper (see Appendix). For an intro
duction to the subject the reader is referred to the 
books by Sternberg8 and Abraham. 9 

2. ISOLATING INTEGRALS AND DEGENERATION 

Our first definition of complete degeneration is the 
following: 

Definition 2.1: A dynamical system (~ ,XH) (see 
Appendix, § 40) will be called locally compl~tely de
generate in U, and U will be called a domain of local 
complete degeration if 

(1) U is an open connected subset of 02n; 

(2) X H f' U is complete (§17); 

(3) every orbit of X H ~ U is a closed submanifold in 
°2n' 
(From here on, § denotes a paragraph of the Appendix.) 

In particular, if there exists a domain of degeneration 
U which is bounded in 02n (since 02n is not a metric 
space we shall use "bounded" for "contained in a com
pact set"), then every orbit of X H ~ U is compact and 
diffeomorphic to 8 1 , i.e., the motion is simply periodic 
for an open set of initial conditions and then it is 
stable. Note that this is just what is usually meant by 
"complete degeneration." Our definition is more 
general in that it can also include the case of noncom
pact orbits such as the "scattering states." 

By replacing the following requirement for condition 
(3), we can define a local k-fold partial degeneration: 

(3') Every orbit of X H W is dense over a (2n - k)
dimensional closed submanifold in 0211(1 '" k", 2n -
2). Note that the usual definition of degeneration in 
terms of action variables starts from k = n + 1. How
ever, in the following, we will be interested only in 
Def.2.1. 

Now, we "globalize" our definition. 

Definition 2.2: A dynamical system (~II,XH) will 
be called globally completely degenerate if it is local
ly completely degenerate in the domain U == 0211' 
Particularly interesting is the case of local degenera
tion in a domain of the form U = UEH-1(E) = H-1(J), where 
H: 02n ~ R is the Hamiltonian function and EEl CR 
(I open and connected). A degeneration corresponding 
to a domain U of this kind will be called a uniform 
local degeneration. This will be the case in presence 
of a "dynamical symmetry" group of H, transitive on 
the energy surface. A classical example is the (re
gularized) three-dimensional hydrogen atom problem, 
where for H < 0 a global canonical action of 80(4) is 
defined. Actually, according to our definition, this 
system is globally completely degenerate and it is not 
surprising that also for H = 0, H> O,a global canoni
cal action exists for E(3) and 80(3, 1), respectively, 1 0 
which are analytic continuations of 80(4). Problems 
of this kind will be dealt with in a future paper. 
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We propose now a definition of isolating integral which 
will prove suitable for the connection with degenera
tion. 

Definition 2.3: Let M be an n-dimensional differ
entiable manifold. A functionf: M ~ R will be called 
isolating in M if 

(1) f (M) is an open connected subset I C R; 

(2) for every C E I, r1(c) is a (n - l)-dimensional 
closed submanifold of M. 

Definition 2.4: Let M be an n-dimensional differ
entiable manifold. A set of k functions (1 '" k '" n - 1) 
f i : M ~ R will be called a k-dimensional isolating set 
in M if each~ is isolating in M and nJ;.di1(c i) 
rv Ci E Ii) is a (rz - k)-dimensional closed submanifold 
of M. 
Then we have 

Theorem 2.1: A dynamical system (02n'XH) is 
locally completely degenerate in U C ~n if 

(i) The!..e exists an open submanifold M of ~n,in
cluding U, which does not contain critical points of 
X H (§8); 

(il) there is a (2n - l)-dimensional isolating set in 
M{f i } such that «dfJ#,XH) = 0 for every i(§41); 

(iii) X H r U is complete. 

Proof: «dfJII , X H) = 0 and the absence of critical 
points of X H imply that the orbit ~ of X H through 
x E Uis a connected component of n~~iA-1Ui(x». 
which is a closed submanifold in M;by (iii) ~ C U so 
that it is a ~osed submanifold in 02" too. The con
dition M :J U is introduced to prevent the existence 
of curves in U which are closed submanifolds in U 
without being closed in ° 2n (limit pOints on aU); see 
Def. 2. 1, Condition (3). 

Note that the condition (iii) can be eliminated in the 
case of compact U, au submanifold of 02n' and 
X H f au E X(aU), that is X H is tangent to au. Theorem 
2. 1 still holds true if condition (iii) is replaced 
by the following one: 

(iii) there exist an integer k < 2n - 1 and a choice of 
indices i1 ' •• ik such that 

~~1(C1) n f~1(c2) n ... n f;l(c k), 

is bounded and contained in U. 

In fact if condition (iii) is satisfied for a certain choice 
(il..· •. if) and i k +1 ;o! i m ,l '" m '" k, then also 
niA~- (c i ) is bounded and contained in U. Thus,by 
induction, the same is true for n~~11f;-1(ci) which by 
condition (li) is then compact. Now, being X H tangent 
to a compact manifold, it is necessarily complete 
(§18). Note that this is a more sophisticated version 
of the usual statement: If a dynamical system admits 
2n - 1 isolating integrals, all its bounded orbits are 
Simply periodic. 

We come now to the characterization of isolating sets. 

Theorem 2.2. Consider k C(oo) functions fl' .. fk' 
fi: M C 02n ~ R, such that~(M) is an open connected 
set Ii C R,and for every x EM there exist a neighbor
hood O(x) C M and a local chart (Q1" 'Q2n; O(x» , such 
that the matrix 

J =11 :~k II q = q u) 
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is of maximum rank. Then fl' • 'fk is a k-dimensional 
isolating set in M. 

Proof: The k functionsf i define a mappingf: M-) 
R k which is a submersion (§12), be the condition on 
J;for the same reason,eachfi defines a submersion 
M ~ R. Therefore, the conclusions follows by 
Theorem 16.8.8. of Ref. (11), as a particular case; 
see also Ref. (9), Proposition 5.18. • 
Note that the essential part of the condition on the 
matrix J is the requirement that it be satisfied for 
open connected sets Ii' Actually the fact that the con
dition is satisfied almost everywhere is guaranteed 
by Sard's theorem: 

Theorem 2.3. (Sard): Let M andN be differenti
able manifolds of dimensions m and n, respectively, 
with m :;, nand qJ: M -+ N be a C (00) mapping. If S is 
the subset of points x EM, such that rank(TxqJ) < n, 
then qJ (S) is of measure zero in N, and N - qJ(S) is 
everywhere dense in N. For the proof see Ref. (11), 
Theorem 16. 23. 1 or Ref. (8), Theorem 3. 1. 
An important remark is in order at this pOint. We 
stress that Theorem 2. 1. is concerned with sufficient 
conditions for local degeneration only. It would be 
desirable to extend the theorem in two directions: 
(a) to give necessary conditions for local degenera
tion; (b) to extend the theorem to global degeneration. 
An answer to point (a) is given by Theorem 3. 3.: 
given a dynamical system (~n,XH) locally degener
ate in V, for every trajectory e c V there exist a 
neighborhood V(0) included in V and (2n - 1) C(oo) 
functionsf. which constitute an isolating set in V(0); 
(see Sec. 3). We observe that this is not the inverse 
to Theorem 2.1., since, in general, V(0) cannot be 
extended to all of V. For point (b),it is actually poss
ible to extend the theorem to global degeneration;but 
this is rather trivial since in this case the existence 
of an isolating set is such a strong condition that it 
is usually not verified; for instance, on compact mani
folds (a function on a compact manifold has always 
critical points). 

Example 2.1: Letn 2 = T2=Sl XSl;q,Pbethe 
angles on T2. Two charts are sufficient to form an 
atlas: Choose two overlapping intervals 11 ,12 of 
length 21T;{q,p EII},{q,p E I2} are the domains of the 
charts. Let w = dp /\ dq be the fundamental 2-form; 
consider the locally Hamiltonian vector field X = 
(dq)4t(§39);it is complete and globally degenerate. The 
most general constant of motion isf(q) beingf a C(ao) 

function periodic in q. However, it must be f' (q) = 0 
somewhere so that an isolating set in n 2 does not exist. 
Summarizing, the definition of isolating set given in 
this chapter provides results well-suited to treating 
local degeneration only. A generalization of this de
finition seems to be in order to deal with the global 
problem. This is just what we want to do in the next 
section. To this aim we shall introduce another de
finition of complete degeneration (called regular 
degeneration). This is slightly more restrictive than 
the previous one, but very naturally leads to a new 
definition of isolating set and allows to state neces
sary and sufficient conditions for global degeneration. 
We shall make use of notations and results given by 
Palais. 12 

3. GENERALIZED ISOLATING INTEGRALS AND 
REGULAR DEGENERATION 

Consider an n-dimensional differentiable manifold. 
M,with complete atlas a = {(1/Ij,Vi )}. We quote from 
Palais the following definitions: 
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Definitions 3. 1: (a) A p-dimensional differential 
system on M is a mapping x -+ ax C TxM, x EM, 
which assigns at every x E Map-dimensional sub
space ax of the tangent space TxM (§4). (b) The differ
ential system a is called differentiable if, for every 
x EM, there exists a neighborhood O(x) and p differ
entiable vector fields in O(x),L l " 'Lp,such that 
(Ll)y'" (Lp)y is a base for aJl for y E O(x). (From 
now on, differential system Wlll mean differentiable 
differential system). (c) The differential system a is 
called involutive if any pair LV L j of vector fields be
longing to a have aLie Bracket lLj,Lj ] also belonging 
to a(§ 5). (d) Given a p-dimensional differential sys
tem a, a connected submanifold £, of M is called a 
leaf of a if for every x E £', Tx£' = a x' There exist a 
leaf of a through every point of M. A leaf is maximal 
if it is not contained in another leaf of 6. The set of 
maximal leaves is called the foliation of M determined 
by a and is denoted by M/ a. The mapping ll8 which 
assigns to every x E M the maximal leaf through x is 
called the canonical prOjection. An open subset U C M 
is said to be saturated with respect to 6 if llEl (ll 8 U) = 
U. A local chart (Xl' •• xn ' U) is called flat with res
pect to 6 if aj ax l ' •• a/axp is a base of a for every 
XEU. A slice of (xI"'xn,V) is a subset of V given by 
(xl" 'Xi:P+l" 'Xn ), (xk denotes a fixed value of xk .) 
(e) If 6 is an involutive p-dimensional differential 
system on M, a coordinate system (x I' •• Xn , U) in M 
is called regular with respect to a if it is cubical and 
flat with respect to 6, and if each leaf of a intersects 
U in at most one p-dimensional slice of (x),' •• X n' U). 
[A local chart (1/1, V) is called cubical if 1/IlV) is an 
open cube in Rn.] A leaf of a is called a regular leaf 
of a if it intersects the domain of a coordinate system 
regular with respect to a. Finally, 6 is called re
gular if every leaf oi a is a regular leaf of a. 
Regular differential systems have the following distin
guishing properties: 

(1) If a is a regular differential system on the differ
entiable manifold M, then every leaf of 6 is a closed 
sub manifold of M (see Palais, Theorem 1-Vll). 

(2) If 6 is a regular differential system on the differ
entiable manifold M, then the quotient set M /6 can be 
equipped with a unique differentiable structure such 
that the projection 

ll8: M-+ M/a 

is a submersion of M onto M/6 (see Palais Theorem 
1-Vm,X). Another relevant result is the following: 

Theorem 3.1: Let cp be a submersion of an m
dimensional differentiable manifold M into a (m - p)
dimensional differentiable manifoldN, with 0 < p < m. 
Then, the differential system defined by 

a: x E M -+ ker(TxqJ) C TxM (§15) 

is a regular involutive differential system of dimen
sion p. The proof can be found in Ref. (12) Chap. I, 
Theorem 13 and Ref. (13), Proposition 11. 4. 1. 

We propose now the following definition: 

Definition 3.2: A dynamical system (n 2n ,XH ) will 
be called locally regularly degenerate in V, and U will 
be called a domain of local regular degeneration if 
(1) V is an open connected subset of n2n such that 
X H ~V is complete; 
1?) There exists an open subset Me n2n including 
U such that X H r M forms a base for a one-dimensional 
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regular differential system en' (Note that this im
plies that Xo has no critical points in M.) 

As before,global regular degeneration means U = n2n• 

Theorem 3.2: A dynamical system (n 2n ,XH ) is 
locally completely degenerate in U if it is locally re
gularly degenerate in U. 

Proof: The proof is similar to that of Theorem 
2.1, since requirements (i) and (ii) are satisfied and 
(iii) is replaced by the regularity of the differential 
system eH which implies that the leaves of e H are 
closed submanifolds of M. • 

The converse is not true, in general; this means that 
the new definition of degeneration is somewhat more 
restrictive, as anticipated in Sec. 2. (See, for instance, 
Ex. 4. 2.) The main interest in giving Def. 3. 2 lies in 
that it renders more clearly the connection between 
degeneration and the existence of isolating integrals. 
We have seen that the existence of 2n-l C (00) func
tions satisfying Theorem 2. 2 is not necessary for a 
system to be completely degenerate. But now we can 
say that a regularly degenerate system in U is such 
that there exist a M::J U and a mapping no : M -4 

M/eH,which is a submersion,Le.,somethi{{g very 
close to a (2n - I)-dimenSional isolating set, the only 
difference being that M/eH need not be an open con
nected submanifold of R2n-1. Certainly,if we intro
duce a local chart (1/.1, V) in MleH with I/.I(V) cubical 
in R2n-1, then 1/.1 0 flo will be an isolating set of C (00) 

functions in ni (V). HAs a matter of fact we have 
H 

Theorem 3.3: If (n 2n ,XH ) is locally regularly 
degenerate in U and x E U, then there is a neighbor
hood O(x) C U saturated with respecttoXH , and 2n-
1 C (00) functions fi : O(x) -4 R, such that «df;)'# ,XH ) = 0 
which define a (2n - I)-dimensional isolating set in 
O(x). 

Proof: Let no x = y;take a local cubical chart 
(Y1" 'Y2n-1;V) ii{iUleH;then O(x) = n"fl (V) and 
It = y, 0 no • H. 

H 

But we can do more than this. Actually, with refer
ence to Def. 3. 2, we can state an iff theorem. First of 
all, lOOking at Example 2. 1, we realize that the essen
tial point is to generalize the definition of isolating 
integral or isolating set by considering "functions" 
in 11; generic differentiable manifold rather than sim
ply in R. This is done by means of the follOwing 
definition. 

Definition 3.3: Given differentiable manifolds M 
and N of di'menSions m and n, respectively, with M 
symplectic,and an open connected subset UCM,a 
differentiable mapping cp: U C M -4 N is said to be "in 
involution" with a closed I-form a if,for every local 
chart (1/.1, V) in N and coordinates Y1' .• Yn of (1/.1, V), 

«d( Yi 0 cp))If, a lf ) = 0 

holds. We do not follow Abraham's definition (16.28) 
in that we do not require dey; 0 cp) and a to be linearly 
independent. Then we have 

Theorem 3.4: Let (n 2n ,XH) be a dynamical sys
tem and U an open connected subset in n 2n ;then the 
follOwing two statements are equivalent: 

(i) XH is locally regularly degenerate in U; 

(ii) X H r U is complete and there is a M ::J YJ, a (2n -
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Proof: (i) 9 (ii) follows by conSidering n = Do . 
The converse (ii) 9 (i) follows at once from Theor~m 
3.1 with cp = n,m = 2n,andp = 1. • 

A final remark on this last theorem. Let us suppose 
that statement (ii) holds true. Then we can construct 
a regular system en and a quotient manifold M Ie H' 

Nand M Ie H will not be, in general, diffeomorphic, It 
may happen that n-1 (c), c E N is not connected, and its 
connected components are distinct elements in M/eH ; 

also n ;r. n 8 • n 8 can be regarded as an isolating 
set of functiifms o:er the manifold MI eH with the re
markable property that its "values" are in one-to-one 
correspondence with the orbits of XH• The price to be 
paid for this is that M Ie H could possible be non-Haus
dorff even if N is Hausdorff. As a simple example 
consider the following 

Example 3.1: Let n 2 = R2 - {(O,O), (a,O), (- a,O)}; 
w =dPA dq and H(q ,p) = (q2 + p2)2 - 2a2 (q2 - p2), 
(a positive real constant); H(n 2 ) = (- a4 • •• + <Xl). The 
two connected components of iI- 1 (O) are distinct 
elements in ~/eH which are not separated by open 
sets. In a certain sense we can regard n 2/eH as the 
"Riemann surface" of H-1 and the point 0 as a 
"branch point." (See Ref. 12, Chap. I: corollary to 
Theorem 13). Yet,XH is globally regularly degener
ate. This shows that we cannot hope to get rid of 
non-Hausdorff manifolds in the general case, How
ever, if we restrict ourselves to the set K of compact 
orbits, then K is a Hausdorff open subspace of n 2nleH 
(see Ref. 12, Theorem 1-VI). 

4. DEGENERATION AND SEPARABILITY OF 
THE HAMILTON-JACOBI EQUATION 

As it is well known, a very useful technique to find 
constants of motion of a dynamical system in practi
cal applications is provided, whenever possible, by 
the process of coordinate separation in the Hamilton
Jacobi equation. In this connection it is generally 
accepted in the physicalliterature6.7.14.15 that there 
is mutual implication between the separability in 
more than one independent systems of coordinates 
and the degeneration of the motion. The first part of 
this implication is usually justified by the existence 
of 2N - 2 independent separation constants, besides 
the energy, which are tacitly assumed to be isolating. 
This belief has even originated a classification of 
completely degenerate systems and related dynami
cal symmetries (Ref. 15). However, what is generally 
overlooked in this connection is the local character 
of any coordinate system (except for the Cartesian 
ones), so that this kind of approach has mainly a 
heuristic value. As a matter of fact, a direct conse
quence of the local nature of coordinate charts is 
that a separation constant A may fail to be a function 
in n2n;then Theorem 2. 2.appUes only if,for an open 
set of initial conditions, the motion takes place entire
ly within the domain of the separation chart. This 
fact is not true in general, of course. To illustrate 
this point, consider the two-dimensional system: 

Example 4.1: H(r cp,pr,P",) = (1/2m)(p~ + pVr2) 
- klr + (:3 -sini CP/;r;-:-Thi's Hamiltonian has been 
claSSified by Fris et al. 15 as being completely de
generate and 0 (3) symmetrical essentially in force of 
the fact that the corresponding Hamilton-Jacobi 



                                                                                                                                    

1110 E. Onofri and M. Pauri: Constants of motion and degeneration 

equation separates in the following two systems of 
parabolic coordinates: 

{

X = t (J.l.2 - 1'2) 
(a) y = J.l.j.1 , 

Actually we have found, using techniques introduced in 
a previous work,16 that separability occurs in the one
parameter continuous family of parabolic charts rot
ated by an arbitrary angle 6: 

{

X = HJ.l.2 - 1'2) cos6 + J.I.I' sin6 
1 ' Y = - 2(J.l.2 - 1'2) sin6 + J.l.j.1 cos6 

I' cost 6 + J.I. sint6 > O. 

However, any separation constant A[ 6] corresponding 
to 6 ,.. 0 is discontinuous along the positive x-axis 
and, what is worse, the discontinuity is not a constant 
but a function of x: This means that A[ 6] (6 ,.. 0) has 
not even a regular differential and it does not define 
closed submanifolds in phase space. As a consequence 
only the orbits which do not cross the positive x-axis 
are closed,Le.,orbits which lie entirely within the 
domain of the chart 6 = O. Such orbits exist only for 
a suitable interval of values of A[OJ if f3 < 0, while for 
f3 > 0 all the orbits go off the domain. Thus we have 
only a local degeneration if {3 < 0; yet separability is 
independent of the sign of {3. 

The fact that a separation constant may fail to be a 
function (or even a closed 1-form) on 02 is certainly 
due, in the example above, to the C(O) natu';.e of the 
Hamiltonian;for C (00) functions such phenomena should 
not happen. However, there is an obvious way to get 
rid of this possibility, namely to properly define 
separability in an atlas of local charts. On the other 
hand, this is indeed necessary if we want to deal with 
general phase spaces, in which it is not possible to 
introduce a single chart regular almos t everywhere. 
We are thus led to give the following definition. 

Definition 4.1: The Hamilton-Jacobi equation for 
a dynamical system (02n,XH = (dH)#), will be called 
globally separable in a sympletic atlas (i = {(1/Ij, Ui )} if 

(1) it is separable in every local chart (1/1., Ui ) with 
n - 1 separation constants Ace: Ui -7 R, (k'= 1, .•. , 
n - 1); 

(2) for every pair (i, j) it holds: 

A'f1 = A <;) when restricted to Uj n ~. 

Also a 1-form,under certain conditions (see Appendix 
§45), can determine closed submanifolds. Therefore 
the definition can be generalized as follows,for local
ly Hamiltonian vector fields: Condition (2) is changed 
to (2') :A~i)- Aki> = CkJin Ui n Ujand the constants clj 
are all commensurable (for k"fixed). 

This definition is such that global separation entails 
the existence of n - 1 integrals of motion in involution 
(besides the energy) defined over the whole 02n' To 
deal with local degeneration we can also consider 
separation in an atlas restricted to an open submani
fold U. The separation constants A k have global im
plications on the Hamiltonian flow only if X H ~ U is 
complete. In terms of separability in an atlas, we can 
now understand the usual occurrence of degeneration 
for Hamiltonians which admit separation in two differ
ent "independent .. systems of coordinates A and B. 
Since "independent" means that H, AN" ABk are func
tionally independent, i.e., that the condition of linear 
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independence of their differentials is already verified 
almost everywhere, one is left to find a domain for 
which the remaining conditions of Theorems 2.1. and 
2.2. are satisfied. Let us observe that our definition 
of global separability provides the correct starting 
point for the definition of action-angle variables 
(Arnold's theorem 9.17). On the other hand, as well 
known, Arnold's theorem, which assumes the exis
tence of an n-dimensional isolating set, provides a 
very simple technique for finding, if any, further iso
lating integrals (algebraic conditions on the funda
mental frequencies). 

We give two simple examples of globally Hamiltonian 
vector fields to illustrate our definitions; In the first 
case two atlases are introduced in which separation 
takes place in a domain U saturated with respect to 
X H; local degeneration follows in U since the separa
tion constants are functionally independent. In the 
second example, two atlases are introduced in which 
separation takes place in a domain U which is not 
saturated with respect to XHithe motion in this case 
is not degenerate. 

Example 4.2: 04 = T*R2; H = t<P~ + P~) + 
t(q~ + q~) + A; A is a C (00) function of r = (q~ + q~)1/2, 
such that 

A(r) = } ::nin:r:::ing and 
dA 

r+-(r)"'O, r>ro 
dr 

Choose U± = {x E Q4;q1P2 - q~l~ 0; 0 < H < !r~}; 
U ± are both saturated with respect to (dH)*; more
over,separability of the Hamilton-Jacobi equation 
takes place in the two atlases: 

a 1 ={(r,O< cP < 21T,Pr ,p,,),(r,-1T < cP < 1T,p.y>P,)} 
(polar coordinates); 

~ = {(Ql' Q2,Pl,P2)} (a single Cartesian chart). 

Separation is also possible, as is well known, in a one
parameter continuous family of elliptical atlases (Ref. 
16). 

The corresponding constants of motion A1 = qlP2 -
q2PI' A2 = p~ - p~ + d - q~, together with their Pois
son bracket A3 = PIP2 + qIq2 form an isolating set 
since the d'A.t are linearly independent. This implies 
that the system is locally degenerate in every domain 
o < H < C < !-r~, Al ,.. O. Actually the system is local
ly degenerate in the whole domain 0 < H < r~/2; note, 
however, that it is not regularly degenerate there. 

Example 4.3: Consider the Hamiltonian 

H= !.(p2 + P",2)_!!.. + U(cp) 
2 ~ r r2 r 2r2' 

U( cp) C (00) and ,.. 0 only in I cp I < CfJo , 

in the phase space °4 ::::: {T*(R2 - {(O,O)});H < OJ. 
XH is not complete for P", = 0; thus we restrict to a 
domain with P", ,.. O. Let a1 be as in Ex. 4. 2 and (! 2 
be a local chart of parabolic coordinates as in Ex.4.1 
with 6 = O. Hamilton-Jacobi equation is separable in 
both (i 1 and a2 only in a domain U which excludes the 
region I cp I < CPo' (Here also there is a one-parameter 
continuous family of elliptical coordinates. 16) Such a 
domain is never saturated with respect to XH (the 
orbits are arcs of Kepler ellipses which cross 
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I cP I = CPo somewhere), so that "2 has only a local 
validity. 

The converse implication, namely the assertion that 
from degeneration multi separability will necessarily 
follow, is also generally accepted in the literature 
(see for instance Ref. 14: Landau-Lifshitz, Chap. VII, 
Sec. 50). The explicit terms of this assertion appear 
to be the following: "If a dynamical system with struc
ture (02n = T*M"XH) (§35) is completely degener~te, 
then there exist more than one independent coordin
ate systems (ql' .. qn) in M, such that the Hamilton
Jacobi equation separates in the "extended charts" 
(q1" 'q",P1" 'p,,). Now,this proposition is false. It 
suffices to consider the elementary example of the 
two-dimensional anisotropiC harmonic oscillator with 
m : n frequency ratio. This system is globally and 
regularly degenerate; however, with the exception of 
the case (m,n) = (1,1) or (1, 2),its Hamilton-Jacobi 
equation separates only in the atlas given by the 
Cartesian canonical coordinates. This follows from 
the fact that, for a Hamiltonian of the form H(q.p) = 
~p2 + V(q),separation is possible in systems of con
focal conics only, due to the Eisenhart theorem (see 
Ref. 16, 18). This implies in turn that the separation 
constants must be quadratic at most in the "momenta" 
p;then the conclusion follows since only one indepen
dent quadratic constant of motion exist for the aniso
tropic oscillator (except for min = lor 2). On the 
other hand, it may be that a proposition similar to the 
above is valid if we enlarge the class of coordinate 
systems, e.g., to general canonical coordinates in ~", 
Such a proposition, however, if true, would be of very 
little interest because the search for separation 
systems of this kind is not less difficult than the 
search for integrals of motion in general, which is 
the true actual problem. 

Let us add some final remarks. As the reader will 
have realized, the concepts of isolating integrals dis
cussed in the present paper go far beyond the stand
ard ideas of "uniform" or "algebraiC" constants of 
motion. This is true firstly because C(oo> functions 
include algebraic or else analytic functions as parti
cular cases; then, because we have seen that the naive 
approach is in general inadequate in dealing with non
Euclidean manifolds. One could argue, at this point, 
that these generalizations, suitable for classical dyna
miCS, are of a rather academic value from the point 
of view of quantum theory. Actually, the restriction 
to algebraic or at least to analytic functions appears 
to be a necessary sacrifice in view of the standard 
correspondential procedure of quantization. Our 
attitude in this connection, however, is to consider 
the correspondential process of quantization itself 
as suffering from shortcomings analogous to those of 
the naive approach to classical dynamics. As a 
matter of fact, within the framework of an intrinsic 
quantization procedure such as the canonical4 or 
dynamical 5 quantization, the above difficulties are 
by-passed and C (00) functions result quantizable 
objects. Admittedly, there are still many open pro
blems in these approaches and the above considera
tions do not prevent the possibility that questions of 
analyticity turn out to be important in the final stages 
of quantization. 
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APPENDIX 

§ 1. A topological n-dimensional manifold M is a 
topolOgical space such that every point of it has an 
open neighborhood homeomorphic to an open subset 
inR". 
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n. A differentiable structure S on a topological 
manifold M is a finite or countable number of homeo
morphisms 1/1,: U, C M ~ R" with the follOwing pro
perties: 

(i) ~ Ui = M, (AI) 
(ii) ljI, 0 ljIj1: 1/j (U, n Uj) ~ R", 

C(oo) and nonsingular. 

Each (1/1" Ui) is called a local chart, Ui is the domain, 
and the Cartesian coordinates ljIi (x) are the local co
ordinates of the point x. The collection (ljI i , Ui ).=1,2,' •• 
is called an atlas Ci. It is obviOUS that an atlas can 
consist of a single chart only if M is homeomorphic 
to an open subset of R n. A topological n-dimensional 
manifold M together with a differentiable structure S 
is called an n-dimensional differentiable manifold. 

§3. A functionf:M~ R is called C(oo) [notationf E 
If(M)1 if its expression in terms of local coordinates, 
i.e., 

it =fo 1/Ij1 

is 0 00). 

§4. Given a point x EM, the tangent space to M at x 
is defined as follows: a tangent vector to Mat x is a 
linear map L: If (M) ~ R such that 

(i) L(f+g)=L(f)+L(g), 

(ii) L (fg)=f(x)L(g) + L(f)g(x). 

(A2) 

(A3) 

The tangent space to M at x is the linear space whose 
elements are the tangent vectors; it is denoted by T ~. 

§5. T"M is an n-dimensional vector space. A base' 
in TxM is given by il/ilxv '" , il/ilx" if Xl'" Xn are 
local coordinates in a domain including x,i.e., 

L(f)='t ai (1....(f01/l-1») , x=x, airealnumbers. 
,=1 ilx, (A4) 

The union U"TxM;o;; TM (called the tangent bundle) is a 
differentiatile manifold whose points are couples 
(x,Lx E TxM). 

§6. A vector field is a C(oo) section of TM, which 
means that for every x E M a vector Lx E TxM is 
selected in such a way that L ,,(f) is a C (CO) function on 
Mfor every fE If(M). The set of vector fields is de
noted by ~(M). 

§7. Given a vector field X E ~(M) and a local chart 
(1/1, U) it is possible to express X as a linear combina
tion 

" 
X= E a(x).L 

1=1' ilx,' 
where ",(x) = X(x,) is C (00) in U. 

§8. A point x is called a critical poini of X if X" = 0, 
I.e., 
if X(f)(x) = 0 for every f E If(M). 

§9. The Lie Bracket of two vector fields Xt>X2 is 
defined as follows: 
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A generalization of the concept of vector field is 
given by the concept of differential system (see Chap. 
3 and §i5). 

§10. Given two differentiable manifolds M 1 ,M2 (nl' 
n 2-dimensional, respectively) a mapping cp: Ml --4 M2 
is called'differentiable if for every couple of local 
charts (lPP>, UP»)(lP~2), u}2» , the mapping 

(A5) 

is C (00) where it is defined, namely for every 
y E lP CP(U(P) such that (lP<t»-l(y) E U(P n cp-l(U(~». 
The differentiable mapping cp is called a diffeomor
phism if it is a homeomorphism and cp-l is differen
tiable. 

H1. A differentiable mapping cp defines a linear 
mapping of the tangent space TxMl into T M2, denoted 
by Tx cP and given by ",x 

'V L E T/,.fl' Txcp(L) = L' E T",xM2; L'(f) = L(fo cp), 

f E fr'(M2 ). 

In given reference frames (a I ax;) (1), (a lay j) (2) the 
mapping T x cp is represented by an nIX n 2 matrix 
which is a differentiable function of the pOint x. The 
rank of the matrix (TXCP)ij is also a function (possibly 
discontinuous) of x and is denoted by rank(T .. cp). 

§12. A differentiable mapping cp: M1 --4 M2 is called 
a submersion if rank(Tx cp) = n 2 everywhere; it is cal
led an immersion if rank(Tx cp) = nl everywhere. 

§13. A subsetM'c M is called a submanifold of M 
if the inclusion map L,namely L: M' --4 M: x E M'--4 
X EM, is an immerSion and it is one-to-one. Consi
der for instance 

t -+ ~ x(t) = t - a sint , 
1 yet) = 1 - a cost 

then (Ttcp);j == 111- a cost,a sintll;rank (Ttcp) = 1 
everywhere if 1 a 1 ;0' 1. We find that for 1 a 1 < 1, cp 
is a one-to-one immersion,for la 1 = 1 it is not an im
mersion and for 1 a 1 > 1, cP is an immersion which is 
not one-to-one. 

§14. Let cp: Ml -+ M2 be a submersion; let 
Y E cp(MI) ~ M 2; then cp-l(y) is a closed submanifold 
in MI,Le.,it is a submanifold of Ml and it is closed 
as a subset. 

§15. Given a differentiable mapping cp: MI --4 M2 
and a point x E MI , the kernel of T"cp is defined as 
follows: 

If cp is a submerSion, ker(Tcp) is a regular differenti
able system (see Theorem 3.1). 

Note: For the sake of simplicity, we shall always 
think of an n-dimensional differentiable manifold as 
a submanifold of RII+I. (Actually this becomes com
pletely rigorous if one considers Rn+p with sufficient
ly large p.) This gives an intuitive flavor to all abstr
act concepts introduced up to now. If M is an n -di
mensional sub manifold in R" + I, a tangent vector at a 
point can actually be written as a' grad with grad == 
[(a/ax I)'" (a/axn +l)] and a tangent to M in the usual 
geometrical sense. Of course, the (n + 1) vectors 
a I ax; are not linearly independent on the surface 
since they are linked by the equation of the surface. 
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However it is always possible to choose locally an 
n-tuple Xl' "Xk' "X,,+l (xkdeleted) which constitute a 
local chart. 

§l6. A curve y in M is a differentiable mapping 
y: I C R --4 M, where I is an open connected subset of 
R. At every point x = Y(A),A E I,a tangent vector to 
y is defined by 

Lx = (T>.y) (d~)' (A6) 

§ 17. Given a vector field X E X (M) and a point x E M, 
there exists a curve y with Y (0) == x, such that X is the 
tangent vector to y in a neighborhood of A = O. y is 
called the integral curve of X at x. If I can be extend
ed to - 00 < A < 00, then X is complete at x; X is com
plete if it is complete at every point of M. 

§ 18. A vector field on a compact manifold is always 
complete. As an example of a noncomple te vector 
field, take the following: Let M = R2 - {(O, OJ) and 
X == aal ar + bal acp, where r, cp are the usual polar 
coordinates and a, b are real positive constants. Then 
the integral curves of X are given by 

"I \ r == aA + reO) 
AEI--4 )cp=bA+CP(O)' 

so that the interval I can be extended at most to 
- r(O)1 a < A < + 00. The vector field Y = ara/ar + 
ba/acp is complete, since its integral curves are given 
by 

"I ~ r = reO) e a >. 
A E (- 00 • •• + (0) --4 • 

cp= bA + cp(O) 

§19. The Lie derivative Lx f of a function fwith res
pect to the vector field X is defined by (Lx f) (x) = 
(dldA)(fO y) 1 ,\"0' A being the integral curve of X at x. 
It holds: Lxf = X(f), which means that XU) == 0 
everywhere implies that f is constant along the inte
gral curves of X. 

§20. The dual space of TxM,Le.,the space of linear 
functionals on Tx M, is a linear space of the same di
mension and is called the cotangent space to M at x 
and denoted by T;M. The union U x T ,,* M is called the 
cotangent bundle and denoted by T * M. A C (00) section 
of T*M is a map Tw : M --4 T*M which assigns to 
every x E Ma linear functional Wx E Tx*M in such a 
way that Wx depend differentiably on x, i.e., {wx(Xx)} E 
5'(M). Such a C(OO) section is called a I-form [notation 
WE X*(M)]. 

§21. Locally in M it is possible to introduce a base 
in T:M WI" .wn defined by wj(a/axj ) = {ijj;every 1-
form is locally expressed as W = L: ~'5j (x)w j with 
OJ E lJ(M). An essential point is that the value of w(X) 
at x depends only on Wx and X x and not on their values 
in a neighborhood; this is evident since 

§22. To every function f E fr'(M) there is associated 
a I-form denoted by dfand defined by df(X) =X(f). 
In particular we can write for the base convectors Wi : 

{iij = a!i (xj ) = dXj(a!J, Wi = dxj • 

A I-form W is called exact if there exists a function f 
such that W = df. 
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§23. An m-form is defined as follows. Consider the 
space of multilinear functionals on T"M: T"M x T"M 
x '" x T"M ~ R and restrict to the subspace of com
pletely antisymmetric multilinear functionals, i.e., 
such that 

(A7) 

Op is the parity of the permutation P. Then we can de
fine the bundle T (m)*M; a C (00) section of it is called 
an m-form;the set of m-forms is denoted by nm{lll). 
As an example, consider m = 2: (dx1dx2)(X, Y) = 
dX1(X)dx2(Y) is the local expression of a bilinear 
functional; we obtain a 2-form from it by antisym
metrizing: w(X, Y) = Mdx1(X)dx2(Y) - dx1(Y)dx 2(X)]. 
The notation usually employed is w = dX1 1\ dX2 
(called exterior product of dx l' dx 2)' 

§24. The exterior product of a k-form a and an m
form fJ is a (k + m )-form a 1\ fJ defined by 

(a 1\ fJ)(X 1, ••• ,Xk +m) 

X fJ(X p (k+1)" 'XP(k+m»)' 

§25. A base for the m-forms is locally given by 

w· . = dx. 1\ '" I\dx. , 'p. ·'m '1 'm 

(A8) 

so that the most general expression for an m -form is 

W ::: 'E . . a· . (x)dx; 1\'" 1\ dXt • 
'l···Zm 'Zl···'m 1 m 

§26. Given an m-form w, we obtain an (m + I)-form 
dw by application of the exterior derivative operator 
d defined through the following properties: 

(i) d(a 1\ fJ) = (da) 1\ fJ + (- l)ka 1\ (dfJ), a,fJ as in 
§(24), 

(ii) df(X) = X(f) ::: df, (A9) 

(iii) dd ::: O. 

Relation (i) makes sense also if k = 0, i.e.,d(fw) ::: 
df 1\ W + fdw. 

§27. 
(dw)(X OX 1" ·Xm) 

lIm 
= m + 1 lk~ (-l)kXk(W(X O" '~k" ·Xm» 

+ ~(_l)i+jW([Xi,Xj],XO""'~p 
><J 

holds. 

(AlO) 

(~k means that X k is deleted). As the simplest exam- . 
pIe, take a l-form w, then (dw)(XO'X1) = HXO(w(X1» 
- X 1(w(Xo» - w([XO,X1])}. It is to be noted that the 
two sums in formula (AlO) individually depend on the 
values of wand Xo, ... X m in a neighborhood of the 
point, while the sum, i.e.,dw, is a true (m + l)-form. 
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§28. An m-form w is called closed if dw = 0; it is 
called exact if there exists an (m - l)-form a such 
that w = da. Due to dd ::: 0, an exact form is also 
closed, but the converse is not true in general, depen
ding on the topology of the manifold. 

§29. Given a mapping cp: M 1 ~ M 2' a mapping between 
nm(M 1) and nm(M 2) is defined, namely 

w En m {lll2)' (cp*w)(X(P" ·X<Ji») 
= w(Tcp(X<P)' •. Tcp(X<Ji»). 

In particular cp*(df)(X) ::: (df)(Tcp(X) == Tcp(X)(f) = 
X(f 0 cp) ::: d(f 0 cp)(X) ~ cp*(df) ::: d(f 0 cp) ("natura
lity" of d with respect to mappings). 

§30. The "pullback" cp* allows the definition of the 
Lie derivative of an m-form with respect to a given 
vector field; let 'Y be the integral curve at x; cp(~) the 
mapping cp(~)x ::: 'Y(~). Then the Lie derivative Lx is 
given by 

d 
L XW ::: d~ cp*(~)w IA~O' 

§31. The inner product of a vector field X and an m
form w is the (m - l)-form ixw defined by 

(i Xw)(X1•• .Xm-1) == mw(X,X1•• .Xm- 1)· 

It hOlds: 

(i) Lxw = d(ixw) + ix(dw), 

(ti) (LXw)(X1, ••• ,Xk ) =X(w(X1, ••• ,Xk» 
k 

- ~w(X1"",[X,Xi]"",Xk)' 
1~1 

§32. A differentiable manifold M is called a sym
plectic manifOld if there is defined a 2-form w on it, 
called the fundamental 2-form, with the following pro
perties: 

(i) dw = 0, i.e., w is closed 

(ti) w(XV X 2) == 0 for every X2 implies Xl == O,Le., 
w is nondegenerate. M 1s necessarily even-dimen
sional. 

§33. It is possible to introduce local charts (called 
symplectic charts or canonical coordinates) such 
that w has the following expression: 

../2 n/2 
w = 'E dx,1\ dXl+n/2 ::: L; dPt 1\ dqj' 

1 1 
(All) 

§34. A simple example of a natural way in which 
symplectic manifolds arise in mechanics is the follow
ing. Consider a point particle on an n-dimensional 
surface M immersed in Rn+1 and subjected to station
ary conservative forces; the Lagrangian function is 
supposed to belong to ff"(TM); in particular we assume 
that in any local chart, 

£ ::: i'E adx)vivJ - U(x) 
i.J J 

being a Ij (x), the metric tensor induced on M by the 
Euclidean metric in R .. +1' The kinetic energy « ::: 
.£ + U defines a bilinear nondegenerate functional 
« : X(M) x X(M) ~ R which induces a one-to-one onto 
mapping T: X{lIl) ~ X*(M), namely (Tvllv') ::: «(v, v'). 
In local charts v ::: 'E v i (a/ax i ); TV ::: L;a lj v j dx' == 
L; P I dx i. The "coordinate transformation" Pi::: 
L;aljvJ == (iJ.£/av i ) coincide with the usual definition of 
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"conjugate momenta." The state of the particle can 
now be described by a point on T*M. It is then easy to 
show that the Lagrange second order equations in M 
transform into a first order systems of 2n differential 
equations of the form 

dqi , 
df =XH(ql), 

dpi . dt =XH(Pi ) wlthXH EOC(11 2n)· 

But the important fact to be noted is that T*Mhas 
given the structure of a symplectic manifold in a very 
natural way (see next paragraph). 

§35. T*M can be given a symplectic structure. Let 
us define a l-form" E OC*(T*M) as follows: x E M, 
"0 E T!M, (x,"o) E T*M,X E OC(T*M);denote by 1T the 
projection T* M -'> M: 1T(X, "0) = x. Then "(.X) == 
"o(T1T(X),or" = 1T*"0' The 2-form W = d" is nonde
generate. This is easily seen in each local chart: 

x =~ ai(qp) -, + bi(qP) - , (. 
a _ a ) 

i aql aPi 

o 
T1T(.X) = r; a i -, , "O(T1T(X) = ~Piai, 

oq' 

"(o:i) = Pi' "(0;) == 0 ~ " = ~ pidqi, 
m 

d-' = ~ dPi " dqi. 
1 

§36. A 2n-dimensional symplectic manifold is de
noted by 112n • 

§37. The nondegenerate closed 2-form W induces an 
isomorphism between OC*(112n ) and OC(11 2n );to ~very 
vector field X there corresponds the l-form XP de
fined by 

(A12) 

Conversely, to every l-form a, th~re is associated a 
vector field X = a# such that (a#)p = a. In local 
canonical coordinates, we have 

",,~. 0 _ 0) X= u a'--, +b i - , 
i ap' aqi 

ixw = ~ (dPi(X)dqi - dqi(X)dpi) 
i 

= ~(aidqi - bidpi) 
i 

(A13) 

§38. A differentiable mapping cp is called symplectic 
if cp*w = w. Recalling the definition of Lie derivative 
§ 30, the condition that X generates a continuous one
parameter local group of symplectic transformations 
is simply given by Lxw :::::: O. By §31, Eq. (i), 

0= Lxw = d(ixw) + ix(dw) :::::: d(ixw) == dX\' (A14) 

Le.,x\, is closed. 

§39. A vector field X is called locally Hamiltonian 
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if X~ is closed; it is called globally Hamiltonian if 

X~ is exact, Le., there exist a function HE ff'(11 2n ) such 
that X = (dH)# or X~ = dH. H is usually called the 
generating junction of the "infinitesimal canonical 
transformation" 

dqi 
""it ::::::X(qi), 

dp. 
_I =X(p,). 
dt 1 

(A15) 

Since in R n every closed form is also exact, for every 
x E 112n there exist a neighborhood O(x) and a func-
tion H E ff'(11 2n ) such that dH = X~ when restricted to 
O(x), i.e., every locally Hamiltonian vector field can 
be described by local Hamiltonians. 

§40. A dynamical system is a couple (11 2n ,XH ) where 
112n is a 2n-dimensional symplectic manifold and X H 
is a locally or globally Hamiltonian vector field. 

§41. Through the fundamental 2-form w the Lagrange 
bracket of two vector fields X, Y is defined as 

(X, Y) :::::: 2w(X, Y) = X~(Y) :::::: - Y~(X). (A16) 

In local symplectic charts this looks like 
n 

(.X, Y) :::::: L: {X(Pi)Y(qi) _X(qi)Y(Pi)} (A17) 
1 

and 

d(X, Y) = [X, Y]~ - LxY~ + LyX~ 

holds. In particular, if X, Yare locally Hamiltonian 
vector fields, 

d(X, Y) :::::: - [X, Y]~. 

§42. If we put a :::::: X~, (3 :::::: Y~, we can define the 
Poisson bracket of the two closed forms a,{3 by 

{a,{3} = d(a#,{3#) :::::: - [a#,{3#]~. 

(A18) 

(A19) 

The Poisson bracket is usually extendj:ld also to non
closed l-forms by {a, {3} :::::: - [a#, {3 #] p. The Poisson 
bracket oj junctions j,g is defined by {j,g} = «dj)*: 
(dg)f), so that {dj, dg}:::::: d{j,g}. Equation (A19) shows 
that the P .B. of two closed l-forms is exact. We 
leave to the reader to rederive the customary ex
pressions of P .B. in local coordinates. 

§43. To illustrate the geometriC meaning of (X, Y), 
some concepts from the theory of integration over 
differentiable manifolds are needed; in particular, the 
"Stokes theorem" 

J ,,-fM 
ac - c ' 

where c is a p-chain and" is a (P - l)-form (see 
Ref. 8, Chap. III). NOW, let X VX2 be two vector fields 
in 11 2n and let ')'1> ')'2 be their (local) integral curves. 
We consider an infinitesimal circuit made up with 
arcs of ')'1' ')'2 with a vertex in (q, P) and with sides 
equal to (.\lX1(qi), '\lX1(Pi» and (1 -'> 2). Let ~r be 
the algebraic sum of the areas of the projections of 
the circuit onto the coordinate planes q 1p lO • •• ,q"P" ; 
then to first order in .\1.\2 ~r is given by .\1.\2 

(X lO X 2)· 

§44. The relations 

da :::::: d{3 = 0, 
(A20) 
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(A21) 

motivate our choice of Lagrange brackets as funda
mental objects when dealing with locally Hamiltonian 
vector fields; in fact, the relation (X1,X2) = 0 is a 
necessary and sufficient condition for the local Hamil
tonians of Xl (of X 2) to be constant along the integral 
curves of X 2 (of Xl). The same condition state in 
terms of POisson brackets would require the explicit 
introduction of local Hamiltonians and would look like 
{Ht, H~} = 0 in ut n U~ being Ht (respectively H~) 
the local Hamiltonian of X 1 (X 2 ) in UHU;) • Example 
02 = T2 = Sl X Sl; w 1,w2 angles on T2; w = dW1 /\ 
dW2; let X = a/aWl, Y = a/aW2; - w 1 and w2 are 
local Hamiltonians for X, Y and within a local chart 
we have {w v w?} = - 1. This is shared by the global 
statement (X, Y) = 1. Note that {dwvdw2} = 0 tells 
nothing about the "conservation" of w 2 "under" (dw 1)'# 

§45. Finally, we want to discuss the conditions under 
which a locally Hamiltonian vector field has a regular 
"energy surface." A 1-cycle is a differentiable map 
y: Sl -'>M. Cycles can be added and multiplied by in
tegers. A cycle y is said to be homologous to zero 
(y ~ 0) if it can be continuously contracted to a point. 
r 1-cycles Y1" •• y .. are independent if n 1Y1 + ... + 
n .. y .. ~ 0 implies n 1 = ... = nr = O. NOW, suppose 
that M is of rank k, i.e., that there a-,:e k independent 
irreducible 1-cycles y i; then Tj = ~'Yi " are called the 
periods of the closed 1-form"'. There are only two 
cases in which'" leads to the definition of a submer
Sion, that is, in conclUSion, to closed submanifolds. 
These two cases are 

(i) T; = 0 (trivial),this means that/= t" E 5'(M) 
i.e.,'" is actually exact,'" = d/. "'0 

(ii) T; = niT; in this case the integral qJ = (21T/T)J'" " 

defines a differentiable mapping M -'> Sl. In both "'0 

cases the condition" '" 0 everywhere is sufficient for 
/ and qJ to be submerSions. If at least two periods are 
incommensurable, J"'", cannot define a mapping either 

""0 
in R or in Sl, which are the only possibilities. We 
always suppose that the locally Hamiltonian vector 
field X H is such that X~ satisfy (i) or (ii). The usual 
requirement of absence of critical points is precisely 

X~ '" O. 
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On the noniterative solution of integral equations for scattering of 
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The scattering of electromagnetic waves is considered using the integral equation form of Maxwell's 
equations for the electric field. These equations are analogous to but not identical to the Lippmann
Schwinger equation in quantum mechanical scattering theory. A transformation procedure dis
covered by Drukarev (and independently by Sams and Kouri) is employed to obtain Volterra inte
gral equations of the second kind for "modified electric field functions." In deriving the Volterra 
equations, one is led by analogy with quantum mechanical scattering to define a "Jost matrix" 
associated with electromagnetic scattering. A simple quadrature procedure is suggested for obtaining 
numerical solutions to the Volterra integral equations. 

I. INTRODUCTION 

Integral equations have long been of great importance 
in mathematical physics because they permit the suc
cinct expression of both the local properties of physical 
quantities and their behavior at boundary surfaces. In 
the case of electromagnetic phenomena, most applica
tions of integral equations have involved kernals which 
are of specialized character, e.g., specialized to poten
tial or diffraction problems with idealized boundary 
surfaces. l - 5 There do, however, exist formulations of 
general integral equations for electromagnetic scatter
ing which are analogous to the well-known Lippmann
Schwinger integral equations used in quantum mechani
cal scattering theory. 3.4 These integral equations are 
Fredholm equations of the second kind and there exists 
a very extensive literature dealing with the analytic 
properties of such equations. l •6 Indeed, because of the 
great importance in quantum mechanical scattering 
theory of iterative solutions to such equations, much 
effort has been expended in studying the behavior of 
essentially perturbative solutions of such integral equa
tions. Such perturbative or iterative solutions are 
generally known as Born or Neumann iterative solu
tions. 1 •6•7 One of the most powerful techniques for solv
ing such integral equations is the Fredholm determinant 
solution procedure. lA.6 Indeed, solutions of this type 
possess much superior convergence properties com
pared to the Born-Neumann procedure (Le., conver
gence is independent of the interaction strength). 

Some years ago it was observed by Drukarev8 (and 
recently rediscovered by Sams and Kouri 9) that the 
Lippmann-Schwinger integral equation could be trans
formed into a Volterra integral equation of the second 
kind for a modified wavefunction,lo The resulting Vol
terra integral equation could then also be interatively 
solved by the Born-Neumann procedure. However, the 
convergence properties of such a solution were now 
essentially the same as those of the Fredholm deter
minant solution.4 Indeed, it has been shown by Brysk 
that the solution of the Lippmann-Schwinger equations 
via the Volterra equations is exactly equivalent to a 
construction of the Fredholm determinant solution. ll 

In addition to independently discovering Drukarev's 
transformation procedure for obtaining Volterra integ
ral equations from Fredholm integral equations (having 
a specialized kernal formll), Sams and Kouri pointed 
out that such Volterra equations could be used as the 
basis for generating an extremely rapid, noniterative 
numerical solution to the original Lippmann-Schwinger 
equation. 9 .12 Their procedure essentially generates the 
Jost matrix numerically, which matrix can then be used 
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to construct the scattering wavefunction and scattering 
matrix according to well-known formalism.4 Further
more, the modified wavefunction satisfying the Volterra 
integral equations are, in fact, transformed into the 
physical wavefunctions by multiplication with the in
verse of the Jost matrix.4 

The present paper contains a treatment of the integral 
equations describing electromagnetic scattering USing 
the Drukarev-Sams-Kouri transformation procedure. 
In the next section, we present the integral equations 
for electromagnetic scattering following the treatment 
given by Newton.4 In Sec. ill we derive the Volterra 
integral equations and discuss analogies to be made 
with quantum mechanical scattering. Finally, in Sec. IV 
the numerical procedure of Sams and Kouri 9 is briefly 
described. 

II. INTEGRAL EQUATIONS FOR ELECTROMAGNETIC 
SCATTERING 

We first present a brief summary of the equations for 
electromagnetic scattering expressed in integral form. 
Our discussion follows that of Newton4 and is included 
to establish notation. The physical process to be des
cribed is that of scattering of an incident electromag
netic wave by some material medium of arbitrary size 
and shape. 

Let the index of refraction n' of the dispersive medium 
be given by 

n,2 = € + 41Tia/w, (1) 

where € is the dielectric constant, a is the conductivity, 
and w is the circular frequency of the radiation. We 
denote the magnetic permeability of the medium by p. 
and note that, in general, the refractive index n' and 
permeability p. are tensor quantities and need not be 
uniform. Thus, the scattering medium need not be homo
geneous or isotropic. (However, for Simplicity, we shall 
treat only isotropic media. The analysis can be exten
ded to include the more gneral case.) 

For the present discussion, it is most convenient to treat 
the electric fields using a "partial wave" description. 
Thus we may express Maxwell's equations for the pro
cess of scattering of an incident electromagnetic wave 
aslA 
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Thus 8 ~l!.il'M' is the ..!:.adial coefficient in the expansion 
of the electtic field 8 (k, II, r) ~ using vector spherical 
harmonics Y5i1(f) and Y~~J,(k) descr!2ing the dependence 
on position r and propagation vector k, and the polariza
tion vectors X:, In the above equation, 

r1e (k; r <, r » = u:'(kr <) wj+) '(kr », 

r;'m(k;r <,r) = -uJ(kr Jwj+) (kr), 

r10(k;r<,r) = r5e(k;r<,r) 

= [J(J + 1»)1/2 .£-. [u (kr ) w (+) (kr )] 
k2r' ilr J < J >, 

r J (k' ) - (J + 1) (kr) (+) (kr ) 00 ,r <' r > - - --- U J < W J > , 
k 2rr' 

(3) 

(4) 

(5) 

(6) 

and all other r~A' elements are zero; the u (kr) is a 
Ricatli-Bessel function of order J, wj+)(krf is a Ricatli
Hankel function of the first kind of order J, and by u:, 
(or wj+)') we mean the derivative of u J (or wJ+» with 
respect to r; the function :n~~::M,,(r) is defined by 

For the special case of a spherically symmetric scat
terer, Eq. (7) reduces to 

:n~;'~::M,,(r) = (-1) Jo "",,0 MM"O A"'A,,(n2 - 1) (8) 

and our integral equation for 8M' (r) yields a set of 
three coupled integral equations given by 

8 :il!'(r) = u J(r)o H' (0 AO - 1) 

+ (-I)Jk2 L; 1"" dr' r~A ,,(r <' r » [n2 (r') - 1]8JJ; A'(r') 
A" 0 (9) 

for A, A', A" equal to e,m, and O. (The above equation 
will constitute the starting point for our noniterative 
solution method since the more complicated nonspheri
cally symmetric scatlerer can be treated using the same 
analysis.) 

We comment that these equations are very similar to 
those encountered in quantum mechanical scattering 
theory, where now the role of the potential is taken by 
the quantity n 2 (r) - 1. Thus, in the absence of any dis
persive medium, n = 1 so that the "potential" in Eq. (9) 
tends to zero as one moves from the scattering region 
into free space. If no medium is present, then n 2 - 1 
vanishes everywhere and 80M' equals the incident wave, 
i.e., no scattering occurs. If one has a spherical region 
radius R where n(r) is constant but different from one, 
the integral in Eq. (9) above extends from r' = 0 up to 
r' = R and for r > R, there are purely outgoing scattered 
waves with amplitude depending on, e.g., for A = e, 

R 
10 u,,(kr')[n 2(r') - 1]8;';A'(r')dr'. Thus,one expects the 
amplitude of the scattered waves to vary with the "size" 
of the scattering medium in this fashion. If [n2(r) -1] 
is bounded by Q, the product QR will be a measure of 
the strength of the scattering medium. This is similar 
to a sort of square barrier or well in quantum mecha
nics. 

III. THE VOLTERRA EQUATIONS FOR 
ELECTROMAGNETIC SCATTERING 

We now wish to discuss the application of the Drukarev
Sams-Kouri procedure for obtaining Volterra integral 
equations. The plan of presentation in this section is 
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as follows. We first illustrate the procedure for solving 
the Lippmann-Schwinger equations for quantum mecha
nical scattering by transforming them to Volterra integ
ral equations. Next, the discussion of the problem of 
electromagnetic scattering will be developed using com
pletely analogous techniques. Furthermore, the dis
cussion of various quantities appearing in the electro
magnetic scattering case will be strongly dependent on 
analogies with the quantum mechanical problem. This 
is particularly true of the definition of an "electromag
netic Jost matrix" relating modified electric field func
tions with the physical electromagnetic field functions. 

The transformation procedure depends on the appear
ance of r < and r> variables in the kernels .9•ll of the 
integral equations and can be illustrated using the single 
uncoupled Lippmann-Schwinger radial integral equation. 
We may eliminate the r < and r> variables explicitly by 
writing the equation for the wavefunction at r as 

l/Ij(r) = u,,(kr) + (kl)"+l wj+) (kr) { dr' u,,(kr')V(r'}l/Jj(r') 

+ (~1)J+1 uJ(kr) .£."" dr' wJ+) (kr')V(r')l/I;(kr'). (10) 

Upon adding and subtracting [(-I)J+1/k]u)kr) t dr' 
wj+)(kr')V(r')l/Ij(r'), we obtain 0 

(-1)J+1 IT 
l/Ij(r) = uJ(kr)[1 + C] + -k- CL'j+)(kr) 0 dr' 

x uJ(kr')V(r')l/Ij(r') 

+ i:;PJ u,,(kr) { dr' wj+)(kr')V(r'}l/Jj(r') (11) 

with 

(_1)J+1 100 

[1 + C] = 1 + -k- 0 dr' wj+)(kr')V(r')l/Ij(r'). 

We now try a solution to Eq. (11) of the form 

l/Ij(r) = qJJ(r)[1 + C] 

and substitution into Eq. (11) yields 

( I)J+1 T 

qJJ(r) = uJ(kr) + k 1a dr' 

(12) 

(13) 

x [wj+)(kr)uJ(kr') - wj+)(kr')u)kr)]V(r')qJ)r') (14) 

as the equation which qJ J(r) must satisfy. In addition, 
we may substitute Eq. (13) into Eq. (12) and formally 
rearrange it to obtain 

1 + C =( 1 + (k1
)J 1a00 

dr wj+)(kr)v(r)qJJ(r~-1, (15) 

provided {I + [(-I)J/k]fo
oo 

dr wj+)VqJJ} is nonzero. 
Thus, the equation satisfied by the "modified wavefunc
tion" qJJ(r) is a Volterra integral equation of the second 
kind. 10 It is seen that the variable upper limit r in this 
integral equation is automatically associated with the 
point r which is the argument of the scattering wave
function. Furthermore, if the Volterra equation for 
qJ J(r) can be solved, the quantity {I + [(- 1) J /k] 100 

dr 
wj+) VqJJ} can be computed and by Eq. (13) a com~lete 
solution to the original scattering problem obtained. In 
fact it has been shown by Brysk that the quantity 
{I + [(-1)J /k] 100 

dr wj+> VqJJ} is the Fredholm deter
o 

minantll for the original integral equation (10). Thus, 
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it has zeros only in the complex k plane, and solutions 
using Eqs. (14) and (15) for real energies may always 
be found. Of course, the zeros of {1 + [(-1)J /k] 100 

dr 
o 

wj+) VIPJ} in the complex k plane locate any resonances 
or bound states of the total system. Finally, we point out 
that the quantity {1 + [(-1)J /k] Iaoo 

dr w}+) VIPJ} is essen

tially the Jost function for the quantum mechanical scat
tering problem. In the present context it arises natu
rally as a transforming factor relating the functions IP J 

(satisfying essentially initial value type boundary con
ditions) to the scattering wavefunctions 1/IJ. We shall 
make use of this later in defining an electromagnetic 
analogue of the Jost function (or matrix). 

In order to most conveniently discuss the application of 
this same procedure to electromagnetic scattering, we 
now rewrite Eq. (9) in matrix form as 

8.,~r) =;; (r) + (-1)J k2 1
00 

dr' 
o 

x rJ(r <,r»·;;;(r')·8.,M(r') (16) 
where 

{8.,Mh.A' = 8M', 

{rJ}H' = r~A' , 
{;;}H' = UJ(kr)OH,[OAO -1], 

and 

{;;;}H' = 0AA,[n 2 (r) - 1]. 
~ 

(17) 

(18) 

(19) 

(20) 

It is then convenient to write r J as a sum of matrix 
products, each factor of which depends only on r < or r >. 

Thus, 
4,..a... .-.... ~ 1 d -.... -.... 
rJ(r <' r » = ff'i(r <). ff'~(r) + r' dr ( ff'~(r J. ff' i(r ») (21) 

with the diagonal Wf, W~, and W~ matrices given by 

ff'ioo(r) = iN + 1 uJ(kr)/kr, 

ff' ree(r) = :r uJ(kr), 

ff' rmm(r) = iuikr ), 

ff' ~oo(r) = iN + 1 wj+)(kr)/kr, 

ff' ~ee(r) = d! w}+)(kr), 

ff' ~mm(r) = iw}+)(kr), 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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{ 
d ~ } { 'W~(r') ~ ..... + - ff'J(r)" dr' --'m(r')'8 dr 4 0 r' JM 

{ 
d ~ } 100 'Wt(r

/
) ~ ...... ~ 

+ dr ff'~(r) • T dr' -r-' - 'm(r')' 8JM(r')J' (32) 

where we have explicitly eliminated the r <' r> variables. 
Now just as in the discussion of Eq. (10), we add and 
subtract the integrals8 ,9 

(-1)Jk2"i¥J(r)'11" i"J(r')';;;(r')' 8" (r')dr' (33) 1 0 2 JM 
and 

to obtain 

~ 

Here the constant matrices CJ and DJ are defined by 
analogy with Eq. (12) as 

(34) 

CJ = (-1)Jk21OO 

dr ff'~(r)';;;(r)' 8JM(r) (36) 
o 

and 

DJ = (-1)Jk 2 Joo dr 'Wt(r)·;;;(r)·8JM(r). (37) 
o 

In or~r to solve Eq. (35), we now write the electric 
field 8JM(r) as 

8JM(r) = 8JM(0Ir) + 8.,M(1Ir)·CJ + ~(2Ir)·DJ. (38) 

This expr£§sion is substituted into Eq. (35), and if the 
functions 8JM(P Ir), P = 0,1,2 are taken to satisfy 

8JM(p Ir) = /"(P Ir) + (-1)Jk 2 

x [{ dr'{W~(r)' 'Wi(r') - 'Wt(r)' 'W~(r')}';;; (r') 

. 8JM(P Ir') + { dr'{d! 'Wt(r)' 'W~(r') 

- d! i~(r)' Wi(r')} ';;;(r')' 8JM(P Ir') J. 
P = 0, 1,2 

(39) 

ff' ~oo(r) = i[J(J + 1)]1/4uJ(kr)/k, 

3'~ee(r) = i[J(J + 1»)1/4uJ(kr)/k, 

(28) with 

(29) 

ff' ~mm(r) = 0, (30) 

while 'Wt has only two nonzero elements given by 

ff'ioe(r) = ff'ieo(r) = i[J(J + 1)]1/4 wj+)(kr)/k. (31) 

Then Eq. (16) may be written as 

8JM(r) = ;;(r) + (-1)Jk 2 ri(r)-J; dr' Wt(r')';;; (r')' SJM(r') 

+ ff'{(r)'l
OO 

dr' ff'1(r')';;;(r')' SJM(r') 
T 
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t(O Ir) = ~(r), (40) 

t(1Ir) = ff't(r), (41) 

and 
..... d ..... 
I J(2Ir) = dr ff'~(r), (42) 

then Eq. (38) represents the solution of Maxwell's equa
tions expressed in in~gral form. The equations satis
fied by the functions 8JM(P Ir), P = 0,1,2 are clearly 
Volterra equations of the second kind and in analogy 
with Eq. (14), it is again observed that the variable 
upper limit r appearing is the same as the radial posi-
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hon variable in the physical electromagnetic function 
8JM(r). Assuming that Eq. (39) may be solved (by itera
tive or noniterative procedures), we now substitute Eq. 
(38) into Eqs. (36), (37) to obtain 

CJ = (-I)Jk2 1°O dr g:~(r)·;;;(r)·[&:'M(Olr) + ~.w(llr)·CJ 
o 

+ ~(2Ir)· D"] (43) 

and 

Then Eqs. (43)-(44) become 

(48) 

so that 

(49) 

whereupon the solution of the original field equations is 
given by 

Here we define ---ST = 8JM(1Ir)8JM(2Ir). ------This then leads to 

(50) 

(51) 

(52) 

It is interesting to compare these expressions with the 
corresponding quantum mechanical scattering equa
tions. It is evident that the elements of (1 - JC) are 
analogu~ of ~e quantity {I + [(-1)01 /k] ~oo wJ+)V/f'Jdr} 
so that (I - JC) now plays the role of the Jost matrix 
for electromagnetic scattering. In particular, under 
circumstances where det(I - JC) vanishes, one expects 
resonant scattering just as in the quantum mechanical 
case. 

Finally, in Eq. (38) the physical electric field is expres
sed in terms of the 8J.w(P Ir), P = 0, 1,2 which we call 
"modified field functions." It is of interest to explore 
briefly the differences between these modified fields 
and the physical field. By far the most significant 
difference may be appreciated by contrasting the Vol
terra equations sa!!.sfied by the 8JM(P Ir) and the Fred
holm equation for 8JM(r). One sees immediately that 
the true field at a point r is influenced by the value of 
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DJ= (-l)o1k2 1°O dr ~i(r)·;;;(r)· [8JM(0Ir) +&:'M(llr)·CJ 
o 

+ 8 JM(2Ir)·DJ]. (44) 

Sinc~ the e~ations for the 8 JM(p I r) do not depend on 
the CJ and DJ matrices, they may be...£ompu~d inde
pendently by solving Eqs. (38). Then CJ and DJ may be 
computed from the above two equations treating them 
as simultaneous equations for the two matrices. Indeed, 
these equations may be written in compact form using 
supermatrices defined by 

(45) 

(46) 

(47) 

the field everywhere else. That is, the integral equation 
for 8JM(r), Eq. (18), involves an integration over the 
entire region where the refractive index differs from 
the free space value of 1. Essentially, this implies that 
a wave propagating in the medium of refractive index 
n (r) undergoes scattering and interferes with portions 
of the wave scattered by all other regions within the 
,medium. On the other hand, the modified field functions 
8JM(p Ir) at r = R are determined solely by their pre
ceeding values and are completely uninfluenced by the 
modified field at points r > R. There is no inter-ference 
between portions of the modified wave scattered at 
different points in the medium. These interference 
effects are introduced when one combines the modified 
fields, together with the "electromagnetic Jost matrix" 
to construct the physical wav~ Then the amplitude of 
the reference "T0dified ~ave 8i!1(0 Ir) is ~hanged by the 
contributions 8JM(1Ir)· CJ and 8JM(2Ir)· DJ which either 
interfere constructively or destructively. 

IV. NUMERICAL PROCEDURE 

We now briefly disc~s a numerical procedure for solv
ing Eqs. (39) for the 8JM(p Ir), p = 0,1,2. The approach 
is based on the approximation of the integral terms by a 
Newton-Coates quadrature. Eq. (39) then becomes 

~ ~ n 
8JM(plrn ) = IJ(plrn ) + (-1)Jk2 2] wt 

t=l 

It is of interest to examine the quantity in b...!:.ackets 
above for t = n. It is readily seen to equal Vn where 

(53) 

(54) 
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since the first term vanishes. [Here we see an impor
tant difference between the electromagnetic scattering 
problem and the quantum mechanical problem. Unless 
there are velocity dependent potentials occurring in the 
quantum mechanical problem, only the term 
i~(r n)' i{(rt) - if(r n)' i~(rt) occurs and this is readily 
seen to vanish at r t = r n' The result is that for quantum 
mechanical problems, the analog of Eq. (53) may be 
solved without necessitating any matrix inversions.] 
Thus, in order to solve Eq. (53) for the "modified field 
functions" 0JM(P Ir) at the point r n it is necessary to 
compute the inverse of the matrix 1 - Vn :;;; (r n) X 

(-1) Jk2wn • However, it is stressed that, for the present 
problem, this is simply a 3 x 3 matrix. and, in general, 
the dimensionality of the matrix to be inv~ted is the 
same as the dimensionality of the matrix 0JMJ'M,(r). 
This may be contrasted with what one encounfers in a 
direct quadrature solution of Eq. (16), where one obtains 

~ ~ N __ ~..t....... 

0JM(rn) =uJ(rn) + (-1)Jk2 I; WtrJ(rn,rt)·m(rt)·0JM(rt)· 
t= 1 (55) 

Even if one uses a quadrature sc~me which takes 
account of the cusp occurring in r J one must invert a 
matrix of dimension 3N x 3N, where N is the total num
ber of quadrature pOints employed. Clearly, the solution 
of the Volterra equations is considerably simpler than 
the corresponding Fredholm equations2 2 In order to 
effect the numerical evaluation of the ° JM(p 1 r n) then, 
one simply requires the initial condition on the modified 
field functions at r == 0 which is given by 

8JM(P 10) == o. (56) 

It follows that Eq. (55) can thell..be used to step the func
tion out into the region where m(r) is zero. Using these 
pOintwise values of SJ~(P Ir n1..n = 0,1,2, ... , the integ
rals required to obtainl - 3C and S can be constructed. 
Finally, (1' - X)-l is constructed and the physical fields 
obtained using Eq. (52). 

Finally, it is noted that one might also desire to attempt 
the solution of Eqs. (39) by iteration. In contrast to an 
iterative solution of Eq. (16), the convergence of which 
is governed by the same conditions as the Born-Neu
mann procedure in quantum mechanics,4 the conditions 
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for convergence of iteration of Eqs. (39) are those of an 
integral equation with a triangular kernal [i.e., K(r, r') == 
o for r' > r]. Thus, one expects the convergence of 
such iterative~olutions to be independent of the 
"strength" of m (r). 

ACKNOWLEDGMENTS 

The author gratefully acknowledges the kind hospitality 
of the Theoretical Chemistry Institute of the University 
of Wisconsin during July, 1971, and the Department of 
Chemical Physics, Weizmann Institute of SCience, 
Rehovot, Israel, where the final version of this manu
script was completed. 

*This research was carried out in part during a visit to the Theoretical 
Chemistry Insthute, University of Wisconsin, Madison, Wisconsin, 
during July, 1971. Support of this research by National Science Founda
tion Grant GP-18872 and National Aeronautics and Space Administra
tion Grant NGL 50-002-001 is gratefully acknowledged. 

tAl fred P. Sloan Foundation Fellow, 1972-74. 
I P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw
Hill, New York, 1953), Vols. I and II. 

2 J. Van Bladel, Electromagnetic Fields (McGraw-Hill, New York, 1964). 
3H. Levine and J. Schwinger, Phys. Rev. 74,958 (1948); 75,1423 (1949); 

Theory of Electromagnetic Waves (lnterscience, New York, 1951), 
pp.I-38. 

4 R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, 
New York, 1966), pp. 101-04 and Chaps. 12 and 15. 

5 J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962). 
• R. Courant and D. Hilbert, Methods of Mathematical Physics (lnter

science, New York, 1953), Vols. I and II. 
7 B. Friedman, Principles and Techniques of Applied Mathematics (Wiley, 

New York, 1956). 
• G. F. Drukarev, Zh. Eksp. Teor. Fiz. 25, 139 (1953); see also Theory of 

Electron-Atom Collisions (Academic, New York, 1965), pp. 61-63, 
73-78. 

·W. N. Sams and D. J. Kouri, J. Chern. Phys. 51,4809,4815 (1969). 
IOThe wave function satisfying the Volterra equation obeys different 
boundary conditions from the physical wavefunction and we therefore 
refer to it as a "modified" wavefunction. 

"H. Brysk, 1. Math. Phys. 4,1536 (1963). 
12W. N. Sams and D. J. Kouri, J. Chern. Phys. 52,4144 (1970); 53, 496 

(1970). Also see D. Secrest, Methods of Computational Physics 
(Academic, New York, 1971), Vol. 10, pp. 243-86. 



                                                                                                                                    

Minimal extensions as generalized semidirect products* 
F. Herbut and M. Vujitic 

Institute "Boris Kidrich"-Vinca, Belgrade, Yugoslavia 

Institute of Physics, Belgrade, Yugoslavia 

OJ. SijatkP 

Institute ''Boris Kidrich "- Vinca, Belgrade, Yugoslavia 
(Received 3 January 1973) 

An extension of a two-element symmetry group Z 2 (defined, e.g., by C, P, or n by another 
symmetry group K is called a minimal extension (ME). From the general theory of group extensions 
it follows that a ME is determined by an element 4> of K and an automorphism F in K which are 
related in a certain way. It is shown that every ME can be expressed as a generalized semidirect 
product (GSP): (K <V H)/ K' 0' where the homomorphism T is defined by F, and K' o,H are cyclic 
groups of order m and 2m, respectively, m being the order of 4>. The simplest GSP form of any 
ME is obtained depending on 4> being outside or inside the center of K (in particular, 4> may be 
equal to the unit element), and F being an inner or an outer automorphism. A complete 
classification of inequivalent ME's is presented, and its possible significance for magnetic space and 
point groups is indicated. The usefulness of the GSP form for finding the irreducible representations 
of a ME is pointed out. 

1. INTRODUCTION 

As it is well known, 1 a group G can be extended by a 
group K into a group E if and only if a mapping + : G ~ 
Aut(K) , as well as a mapping w : G x G ~ K, can be 
found so that the following relations are satisfied '!f a E 

K,'!fa,b,c EG: 

+[a ](+[b ](a» = w(a, b )+[ab ](a)w(a, b )-1, 

w(a, b)w(ab , c) = +[a](w(b, c»w(a,bc). 

(la) 

(lb) 

The maps + and w are assumed to be normalized, i.e., 

w[e] = I 
w(e,e) = w(a,e) = w(e,a) = €,'!fa E G 

(2a) 

(2b) 

(e,l, and € being the unit elements in G, Aut(K) and K, 
respectively). Then 

E = {(a,a)1 a E K,a E G}, 

with the composition law 

(a,a)({3,b) = (a+[a]({3}w(a,b),ab). 

(3a) 

(3b) 

The isomorphism i: a ~ (a, e), '!f a E K defines an in
variant subgroup i(K) in E such that E/i(K) ~ G, i.e., we 
have the exact sequence. 

1~K~E~G~1. 

When G is of order two, i.e., G = Z2 = {e,a} (e.g., the 
generating element "a" can be C,P,or T),E is called 
a minimal extension (ME).2 Owing to Eqs. (2) the maps 
+ and w are now determined by F = +[a] and cP = 
w(a,a). The necessary and sufficient conditions (1) 
boil down to 

F2(a) = cpacp-1 == I",(a), '!fa E K, (4a) 

F(CP) = cpo (4b) 

Equation (4a) by itself means that F cannot give any 
extension at all unless it belongs to a coset E Aut(K)/ 
I(K) [I(K) being the invariant subgroup of all inner auto
morphisms in K] whose square is I(K) , i.e., to an in
volutive coset. 
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Two ME's determined by F, cp and F' , cp' are equiva
lent if and only if there exists a E K, such that: 2 

F' = IaF, (5a) 

cP' = aF(a)cp. (5b) 

It is an immediate consequence of Eqs. (5) that if F 
gives a solution, then F' gives an equivalent one if and 
only if it belongs to the same coset in Aut(K). 

From now on we shall consider suitable representatives 
F, cp from the classes of equivalent extensions so that 
F is simplest possible. All the classes in which an F 
can be found such that F2 = I (an involution) we group 
together to obtain a category conSisting of, what we 
call,involutive ME's. Section 2 is devoted to the dis
cussion of these extensions. Section 3 treats the re
maining noninvolutive ME's, which are characterized 
by the nonexistence of an involutive F in the class of 
equivalent extensions. An example is presented as an 
illustration for the noninvolutive ME's. 

2. INVOLUTIVE MINIMAL EXTENSIONS 

Let F, cp be an arbitrary solution of Eqs. (4) such that 
F is in the same coset of Aut(K) [with respect to I(K)] 
with at least one involution F o' It is an immediate con
sequence of Eqs. (4) that there exists an equivalent 
solution F 0' cp 0 satisfying 

2 
Fo =1, A-. E CFo 't'0 , 

F 
where by C 0 we denote the subgroup of the center C 
of K conSisting of all elements in C which are invari
ant under F o. 

(6) 

A. The complete classification of nonequivalent ME's 

Two solutions F, cp and F' , cp' are equivalent if and only 
if the corresponding F 0' CPo and F o' CPo are equivalent. 
Therefore, it is sufficient to classify only the latter. 

Lemma 1: All the nonequivalent involutive ME's of a 
grour K are enumerated firstly by the cosets of Aut(K) 
[with respect to I(K)] which contain an involution, and 
secondly, after having chosen an involution F 0 in each 

F such coset, by the elements of the factor group C 0/ 

Copyright © 1973 by the American Institute of Physics 1121 
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CF O(C)d, where CF O(C)d = {yF 0(")1,, E C} is an invari-
F 

ant subgroup of Co. In the second step one may use 
alternatively a set of representatives, one from each 
coset of CFo with respect to CF O(C)d. 

Proof: The first claim follows from the definition 
of involutive ME's and (5a). Further, as was already 
pOinted out,one can replace any given involutive solu
tion F, <P by F 0' <Po' where F 0 is the chosen involution 
in the same coset as F, and <P 0 is some element of CF 

0 • 

It is seen from Eqs. (5) that F 0' <Po and F 0' <Po are equi
valent if and only if there exists a E C, such that <Po = 
aF o(a)<po' i.e., if and only if <Po and <Po are in the same 
coset E cFo/cF o(C)". All that remains to be shown is 
that CF O(C)d is an invariant subgroup in CFo, which 
follows easily. QED 

The proof of Lemma 1 can also be obtained using coho
mology theory, where it is shown that the nonequivalent 
extensions of G by K are enumerated by the elements 
of the second cohomology group H2(G, C), which, for cy
clic G, is given by3 Ker(T)/Im(N). For G = Z ~(a) the 
mappings T and N are T(,,) = "~0(,,-1) and N(,,} = "F o(r) , 
V" E C. Therefore, Ker(T) = C 0 and Im(N) = CF o(C) 
as claimed in the lemma. 

B. The central GSP form 

The central generalized semidirect product (GSP) 
form 4 •5 of any extension E of G by K exists provided 
that the mapping ~ can be a homomorphism denoted by 
0': G ~ Aut(K). Each central GSP is based on an exten
sionH of G by a central subgroup Co of K,i.e., 

l n 
1 ~ Co ~ H ~ G ~ 1. 

Here Co is invariant under every O'[a], a E G, and His 
obtained using 0': G ~ Aut(Co)' It consists in a simple 
construction: 

E = (K ® H)/Co' (7) 

where the semidirect product K ® H is determined by 
the homomorphism T =O'on, andCo ={(", l(,,-1» I" E Co}, 

In general, the main problem in this approach lies in 
finding a 0' and an H. In the case of involutive ME's 
both of these problems disappear because every F 0 and 
<Po satisfying (6) provide us with 0' andH,respectively. 
Namely, having chosen F 0 to be an involution, the map
ping ~ obviously becomes a homomorphism 0', i.e., 

O'[a] =Fo. (8) 

The cycle of <Po gives the central subgroup Co' i.e., 

Co = Z".(<Po)' 

where m is the order of the element CPo. Any cyclic 
group of the order 2m can be taken for H, i.e., 

with x as the generating element. The isomorphism 

(9) 

(10) 

l: Co ~H we define by l(cpS) = x2P, P = 1, ••. ,me The 
kernel of the homomorphism n:H ~ Z2(a) is l(Co), so 
that n(xq ) = a q , q = 1, .•. ,2m (remembering that a 2 = 
e). The homomorphism T: H --+ Aut(K) equals 0'0 n, i.e., 
keeping in mind that F~ = I, 

T[Xq] = F~, q = 1, ... ,2m. (11) 

J. Math. Phys .• Vol. 14. No.8. August 1973 

Thus we have established the following: 

Lemma 2: For an arbitrary involutive FOE Aut(K) 
and any <Po E CFo, whose order is m, the central GSP 
form of the corresponding ME is the factor group 

E = [K ® Z2m(x)]/Co, 
where the composition law in K ® Z2",(X) is 

(a,x
q
)(/3,xr) = (aF~(/3),xq+r), 

(12) 

a,/3 E K, q,r = 1, ... 2m, (13) 
and 

, J P 2(m-p) 1 } 
Co =l(<Po,X ) P = 1, . .• ,m • (14) 

Different choices of x give equivalent realizations of E. 

It is useful to notice [cf. Ref. 4, Sec. 5(C)] that after 
having constructed E by (12),it is a product of two sub
groups. The first is invariant in E and isomorphic to 
K, the second is isomorphic to Z 2 m(x), and they inter
sect in a third subgroup isomorphic to Co = Zm(<Po).6 

C. Canonical forms 

Lemma 1 gives a systematic way of choosing F 0' <Po 
as representatives from well-defined cosets to obtain 
one involutive ME from each class of mutually equi
valent ones. There is an obvious freedom in this selec
tion, which can be used to make the central GSP form 
simplest poSSible, i.e., canonical. 

First we distinguish between F 0 being an inner auto
morphism and its being an outer one. In the former 
case one takes F 0 = I. According to Eq. (11) this 
causes T to become the trivial homomorphism (i.e., 
one has the case of the central extensions), and E from 
(12) to take up the form 4 •7 

E = [K ® Z2m(x)]/Co , (15) 

which we call the generalized direct product (GDP). 
When F 0 is an outer (involutive) automorphism, T is 
necessarily nontrivial, and therefore the GSP form 
cannot simplify to the GDP one. 

As to <Po, irrespectively of F 0 being an inner or outer 
automorphism, the lower its order m is the smaller 
Z2m(x) becomes. Hence in each coset of CFo one 
should single out a <Po of minimal order. In CFO(C)d 
itself <Po = € is the unique choice, which makes Co tri
vial. This reduces the GDP form to the direct product 
(DP), and the GSP to the semidirect product (SP). 

To summarize and to compare this rough classifica
tion according to the simplicity of form with the classi
fication from A1 to B2 of Lee and Wick,2 we give the 
table 

F 0 involutive outer automorphisms 

DP SP 
<1>0 =" 

GDP central GSP 
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3. NONINVOLUTIVE MINIMAL EXTENSIONS 

Let K be a given non-Abelian group, and F an outer auto
morphism in K belonging to an involutive coset [element 
of Aut(K)/I(K) whose square is I(K)] which does not 
contain an involution. As a consequence, F defines via 
Eq. (4a) a coset in K (element of K/ C distinct from C) 
because 1 ~ C ~ K ~ I(K) ~ 1. On the other hand, Eq. 
(4b) gives the subgroup of elements in K invariant under 
F. H this coset and this subgroup have a nonempty in
tersection, then there exists a solution F, cf> of Eqs. (4a) 
and (4b) , which we assume fixed. In contrast, in the case 
of involutive ME's the coset is always C itself, and the 
intersection CF contains at least E. 

From another point of view, a pair F, cf> satisfying (4) 
gives a noninvolutive ME if and only if there is no equi
valent F',cf>' such that cf>' E C. 

A. The complete classification of nonequivalent ME's 

For the classification we turn to F r ,the automorphism 
F reduced to C, which (4a) shows to be necessarily an 
involution, and consider the ME's of C determined by 
Fr' 

Lemma 3: All the nonequivalent noninvolutive ME's 
of a group K for a given F are in a one-to-one corres
pondence with the factor group C

F 
r/CF r(C)d. 

Proof: It is easily verified that F, cf>' is allo a solu
tion of Eqs. (4a) and (4b) if cf>' = cf>ocf>, cf>o E C r, where 
F, cf> is the fixed solution. This form of cf>' is also a 
necessary condition because Eq.(4a) implies cf>'cf>-l E C, 
and (4b) en}ails that cf>'cf>-l is invariant under F, so that 
cf>'cf>-l E C r. Therefore,all solutions F,cf>' (with the 
fixed F) are in one-to-one correspondence with all so
lutions F r' cf> 0 for ME's of C. H two solutions F r' cf> 0 
and F r' cf>o are equivalent, then Eq. (5b) entails the 
equivalence of F,cf>ocf> and F,cf>ocf>. Contrariwise,if 
F,cf>' and F,cf>" are equivalent,then there exists a E K, 
such that Ia = I and cf>" = aF(a)cf>'. Replacing here cf>' 
= cf>ocf> and cf>" = cf>ocf>, it follows that F r' cf>o and F r' cf>o 
are also equivalent. Since F r' cf>o always give involu
tive ME's of C, Lemma 1 is valid for them. Therefore, 
translation by the fixed cf> establishes Lemma 3. 

Remark 1: In the proof of Lemma 3 one has a sim
pIe illustration of the important statement of the coho
mology theory that the nonequivalent extensions of K 
and those of C stand in a one-to-one correspondence. 

B. The noncentral GSP form 

In the case of noninvolutive ME's the map + is not a 
homomorphism (because +[a] = F could not be an in
volution), so that the theory of central GSP [see Sec. 
2B] is not applicable. Nevertheless, the approach of i
unifications to GSP5 makes it possible to put also these 
ME's into a GSP form. 

To sum up this approach, let K and H be two groups, and 
let r be a homomorphism: H ~ Aut(K). Furthermore, 
let there exist a subgroup Ko of K and an invariant 
subgroup Hoof H which ar e isomorphic via l : K 0 ~ H 0 

so that the following necessary and sufficient conditions 
are satisfied: 

r[x](y) = Z-1(xl(y)x-1), Vy E K o' Vx E H, 

r[l(y)](a)=yay-l, VaEK,VyEKo' 
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(16a) 

(16b) 

Then the GSP 

E = (K <V H)/Ko, (17) 

with 

(18) 

is a unification of K and H, as well as an extension of 
G =H/Ho byK. 

H K 0 is a noncentral subgroup of K, and only then, + is 
not a homomorphism5 and (17) is called noncentral 
GSP. 

Lemma 4: The noninvolutive ME determined by F,cf> 
(cf> necessarily noncentral) has the noncentral GSP form 
(17), where H = Z2m(x), m being the order of cf>; r[xq] = 
Fq,q = 1, .•. ,2mjKo = Zm(cf»j l (cf>P) = x 2P , P = 1, ... , 
m. 

Proof:· It is sufficient to verify the validity of con
dition (16a) only for the generating element of H using 
(4b), and the validity of (16b) only for y = cf> with the 
help of (4a). QED 

Remark 2: When dealing with involutive ME's one 
might choose a noninvolutive F and arrive at a non
central GSP. This appears to be useful when the cor
responding cf> could be. E, Le., when the GSP simplifies 
to SP (cf. case A2 in Ref. 2). 

It is noteworthy that every ME (involutive or not) has 
a GSP form which is determined by F, cf>. 

Remark 3: The usefulness of the GSP form of a ME 
lies in the fact that one can easily find the irreducible 
repr.esentations (m's) of a GSP.4 Namely,finding the 
IR's of a semidirect product with the second factor 
being a cyclic group is well known. 8 The m's of the 
factor group (K<V H)/K'o are a selection of the m's of 
K<V H, consisting of those whose kernels contain K'o. 

We expect that the GSP form of ME's, their complete 
classification and canonical forms will prove valuable 
in the theory of linear-antilinear representations, a 
continuation of Wigner's corepresentation theory,8 
which we intend to undertake. 

C. An example 

Lee and Wick2 presented a number of examples of ME's 
discussing discrete symmetries of elementary particles. 
Noninvolutive ME's (B3 in their notation) did not occur 
among them. Also in a different field-in the magnetic 
groups of solid state physics-ME's appear to be im
portant. 9 For example, among the 1651 magnetic space 
groups there are 1191 in which time reversal occurs 
only in combination with other operations, and not by 
itself. Groups of this type can be obtained systematic
ally by finding all index-2 subgroups of all (classical) 
space groups. Namely, if M' is one of the latter and G 
its subgroup of index 2, Le., -

M' = Q + RQ,(R E M',R I=. Q), 

then 

M =Q + eRG 

(6 being the time reversal) is a magnetic space group. 
Obviously,M' and M are ME's of Q, and we expect that 
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the complete classification of ME's presented in this 
paper will prove useful. 

Here we give only an example of an M' which is a non
involutive ME of a Q. Let M' be thespace g~oup P4 (in 
the International notation), i.e., the set of transforma
tions 

(alt),a E {E,C 4z ,Qz,CL}, 
3 

t E {I; n;al In; = 0, ± 1, ± 2, ... ; 
1'1 

I a 1 I = I a2 I ;" I a 3 1 ; a 1 1- a 2 1- a 3 1- a 1}, 

with the composition law 

(altHa'lt') = (aa'lat' + t). 

Let G be its subgroup obtained by restricting a to {E, 
C~ .. f, which clearly is of index 2. Then any coset re
presentativeR is of the form (C 4 .. IO)(alt), (alt) E Q. 
Now,cp =R2,andF(alt) =R(alt)W1, V(alt) E Q,and 
different choices of R give equivalent ME forms of M'. 
It is easy to show that no R can give cp E C, the center 
C being the subgroup of translations along the zaxis. 
Thus M' is a noninvolutive ME with respect to Q. 
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The finite, canonical symmetry transformations of the negative energy motions of the classical 
Kepler problem are constructed by solving the fundamental differential equations of the dynamical 
invariance group. The geometric interpretation of the transformations is discussed. 

1. MOTIVATION 

The nonrelativistic Kepler problem has long been a 
subject of theoretical interest because it is an import
ant example of a dynamical system possessing so
called hidden symmetry. The invariance transforma
tions of its Hamiltonian form a representation of the 
orthogonal group in four dimensions whereas the 
obvious geometric symmetry of its potential function 
is only that of the orthogonal group in three dimensions. 
The additional symmetry results from the particular 
functional form of the force law governing the motion. 
Thus the symmetry group of the Kepler problem is 
referred to as a dynamical symmetry group, and the 
additional symmetry is called an internal symmetry. 
The harmonic oscillator is another important problem 
in mechanics which has received extensive study be
cause of its hidden symmetry. 

A transformation of the dynamical variables in phase 
space is a symmetry, or invariance transformation of 
a dynamical system if the transformed Hamiltonian 
H~q,p) is related to the original Hamiltonian H(q,p) by 
the relation 

H'(q,p) = H(q,p), (1.1) 

where q and p are generiC symbols for a complete set of 
coordinates in phase space. Symmetry transformations 
of the Hamiltonian are canonical and map any given 
solution of the equations of motion into another solution 
having the same total energy. The continuous symmetry 
transformations of a dynamical system are generated 
by those constants of its motion which are not explicitly 
time dependent. If these constants of the motion form a 
Lie algebra, the transformations furnish a representa
tion of the appropriate group. 

The three-dimensional harmonic oscillator is a well
known example of such a system. The invariance trans
formations of its Hamiltonian form a representation of 
the group SU(3). The finite transformations of the 
group can be written down rather easily because the 
primitive dynamical variables are very well adapted 
to the symmetry of the problem. Also one is able to 
obtain some inSight into the transformations from a 
geometric standpoint. 

The example of the Kepler problem is different, how
ever. The primitive dynamical variables are badly 
adapted to the symmetry of the problem. As a result 
the finite, symmetry transformations of the Kepler 
Hamiltonian are very complicated and have received 
little attention in the literature. In particular, a really 
sufficient geometric interpretation of the problem has, 
to our knowledge, never been given. 

Because of the preeminence of the nonrelativistic 
Kepler problem in classical mechaniCS, it therefore 
seemed desirable to construct the finite symmetry 
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transformations of its negative energy motions and to 
discuss their geometric significance. 

2. HISTORICAL REMARKS 

A major advance in the classical treatment of the 
Kepler problem was made many years ago by Laplace1 
when he discovered the existence of three new con
stants of the motion in addition to the components of 
the angular momentum. These additional conserved 
quantities are the components of a vector which de
termines the direction of the perihelion of the motion 
and whose magnitude is the eccentricity of the orbit. 
The Laplace vector was later rediscovered by Jacobi2 
and has since been rediscovered several times under 
different names. In 1926 Pauli3 used the Laplace vector 
to solve for the energy spectrum of the hydrogen atom 
by purely algebraic means. Hulthtln and Klein4 then 
showed that, suitably chosen, the six constants of the 
motion of the Kepler problem form a Lie algebra iso
morphic to that of 0(4), the orthogonal group in four 
dimensions. Shortly thereafter, Fock5 showed explicitly 
the 0(4) degeneracy of the wave functions of the quantum 
mechanical problem. In 1936 Bargmann6 established 
the connection between Pauli's algebraic treatment and 
the group theoretical approach used by Fock by showing 
that the constants of motion of the Kepler problem 
generate Fock's group. 

In the last thirty years the Kepler problem has been 
one of the most exhaustively studied in analytical dy
namics. Many significant papers 7 - 15 have been devoted 
to the hydrogen atom and its symmetry group. In recent 
years the use of invariance groups and the study of 
symmetries have played an important role in the class
ification of elementary particles. Since particle sym
metries are usually broken, noninvariance groups have 
come into prominent usage. The nonrelativistic Kepler 
problem is an excellent prototype of a system possessing 
a dynamical symmetry group and even of one displaying 
a broken symmetry (if its various energy levels are 
considered as arising from a symmetry breaking mech
anism). Thus renewed interest in the Kepler problem 
has centered primarily around noninvariance groups of 
its Hamiltonian. 16- 21 

The problem of finding the finite, canonical symmetry 
transformations of the negative energy states of the 
Kepler problem has been addressed in several inter
esting papers.22"25 The high degree of nonlinearity of 
the equations has limited the success of the investiga
tions and has not allowed a tractable geometric inter
pretation of the results. 

3. FORMULATION OF THE PROBLEM 

The Hamiltonian of the nonrelativistic Kepler problem 
will be written as 

H = p2/2m - k/r, k > O. (3.1) 
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The constants of the negative energy motions are given 
by the expressions 

L = q x p, 

t
~ ~ ~J :4= 1. pXL_'l.. 

(-2m H) 1/2 km r 

(3.2) 

which are, respectively, the angular momentum vector 
and the Laplace vector divided by (-2mH)1/2. The nota
tion used throughout is standard and should require 
only a minimum of explanation. 

The components of L and A are closed under the Poisson 
bracket operation and form a Lie algebra which is iso
morphic to that of 0(4). This can be put into evidence by 
defining the linear combinations 

M =~ (L +A), N =~ (L -Ii). 

These new quantities obey the following bracket re
lations. 

{Mi'Mj} = Eij,.J'vfk' 

{N;,Nj } = Eij"N k' {M;,Nj } = 0 

(3.3) 

(3.4) 

In (3.4) the latin indices run from 1 to 3, repeated in
dices are summed, and Et'k is the Levi-Civita tensor 
density. The structure of the algebra is thus seen to be 
that of 0(3) x 0(3), i.e., 0(4). 

If the generator of the group of transformations is de
noted by G, the differential equation describing the 
action of the group upon any coordinate of the system, 
say F, may be written in terms of the Poisson bracket 
of F with G as 

dF(s)= {F(s), G}. 
ds 

(3.5) 

Here s is a parameter defined along the group trajectory 
in such a manner that s = 0 corresponds to the identity 
transformation. For the Kepler problem the generator 
will be written in the form 

G = HY'(L +A) +Z'(L-A], (3.6) 

where Y and Z are vectors, independent of s, which para
meterize the g~up. ~should be noted that, while the 
components of Y and Z are essential parameters, s is 
not and is introduced simply for convenience. Thus G 
generates a six parameter group of transformations. 

The difficulty of the problem is almost immediately 
obvious. If one chooses, most naturally, the primitive 
dynamical variables q and pas coordinates, the struc
ture of the Laplace vector is such that the resulting 
differential equations are highly nonlinear. In reality, 
of course, the trouble arises because these coordinates 
are badly adapted to the symmetry of the problem. One 
approach that suggests itself, therefore, is to try to find 
a coordinate set which is more suitable in the hope that 
the differential equations will become manageable. At 
the same time, though, one should not make so much of 
a concession to manageability that it becomes impos
sible to picture what the transformations look like. For 
instance, using constants of the motion as coordinates 
yields considerably Simpler equations, but~y g~met
ric insight into the transformations of the q and p in 
such a coordinate system is out of the question. 
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In searching for a new coordinate set one naturally 
thinks of the approach used by Fock. By projecting the 
momentum space stereographically onto the surface 
of a unit hypersphere, he was able to exibit the higher 
rotational invariance of the problem in terms of the 
coordinates on the sphere. Even though Fock was deal
ing with the quantum mechanical problem, it seems that 
the stereographic sphere should also be useful in the 
classical description. The reason is that the hodographs 
of the negative energy motions of the Kepler problem 
are circles. Under stereographic projection circles in 
the momentum space are mapped into circles on the 
sphere. Thus the problem of mapping orbits into orbits 
in momentum space is equivalent to mapping circles 
into circles on the sphere. 

With these thoughts in mind we tentatively introduce 
in place of the Pj , the four coordinates 

~ 2poP p 2 - P02 
p= p---::-~ 

Po2 + p2' 4 - Po2 + p2 ' 
(3.7) 

where Po = (-2mH)1/2. Inorderthatthetreatmentnotbe 
restricted to a single energy hypersurface though, we 
regard H as the Hamiltonian function rather than some 
given absolute constant. The four new coordinates 
satisfy one side condition: 

p2 + P4 2 = 1. (3.8) 

Only three are independent, therefore. 

Intuitively, it is desirable at the same time to introduce 
a coordinate set in configuration space that complements 
the one in momentum space. The orbits in configuration 
space are ellipses in general. An ellipse, however, can 
be viewed as the parallel proj ection of a circle on a 
hypersphere. Accordingly then we introduce the four 
coordinates on a unit hypersphere in configuration 
space: 

q q'P~ 
Q =---p, 

r km 
(3.9) 

Again only three of the coordinates are independent as 
they satisfy the side condition 

(3,10) 

It is important to note that the eight new coordinates 
are subject to an additional constraint. They are 
orthogonal: 

(3.11) 

Thus, in all, we have eight quantities subject to three 
side conditions. Consequently, they do not form a com
plete set in the six dimensional phase space. An addi
tional coordinate is required, and we choose for it the 
Hamiltonian H. 

The inverse transformations can now be written down. 
They are 

q = -~ [(1- P 4fii + Q4P], 
2H 

P = (-2mH)1/2 -p-. 
1-P4 

(3.12) 

Again the reason for introducing coordinates other than 
qandpis to simplify the differential equations of the 
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group. If the calculation is performed, the new equations 
are in fact simpler than the original ones. It is pos
sible at this point, however, to use an additional device 
which reduces the complexity of the equations even 
further. One knows that, in general, quaternions pro
vide a natural and even elegant way in which to repre
sent the transformations of 0(4). It turns out that if the 
new coordinates in configuration and momentum space 
are considered as being the components of quaternions, 
and if the differential equations of the group are written 
in quaternion form, the structure of the equations is 
dramatically Simplified. 

As quaternions are not frequently used in physics 
today, it may be well to list a few of their algebraic 
properties. 

4. QUATERNION ALGEBRA 

If a Cartesian coordinate system is intr'oduced into a 
four-dimensional Euclidean space, and the four unit 
vectors along the axes are denoted by ell' the resulting 
vector space over the field of real numbers may be 
converted into an algebra by prescribing the following 
multiplication table for the efl' 

(e4)2 = e 4, e 4e i = e i e 4 = ei' 

(e i )2 =~4' eiej = Eijke k• 
(4.1) 

The vectors in this space form an algebra of rank four 
over the field of real numbers, and they are called 
quaternions. Quaternion multiplication is both distribu
tive and associative, but not commutative. A given non
zero quaternion possesses both a left and a right in
verse, and it is possible to divide by a nonzero quater
nion. Thus quaternions form a skew field. 

If a and bare quaternions one writes 

a = allefl = a4e 4 + Q'e, 

b = bllell = b4e4 + b';;; (4.2) 

where the components all and bll are real numbers. The 
product of a with b is given by 

The quaternion conjugate to a, a* is defined as 

(4.4) 

The product of a nonzero quaternion with its conjugate 
is a positive, nonzero number which is called the norm 
of the quaternion. A vectorial quaternion is, by defini
tion, a quaternion which has a zero scalar part, that is, 
a zero value for its fourth component. Finally, the 
scalar product of a and b is prescribed as 

a'b = Hab* + ba*]. (4.5) 

These are by no means all the properties of quaternions, 
but they are the only ones that will be needed in this 
paper. 

5. THE DIFFERENTIAL EQUATIONS AND THEIR 
SOLUTIONS 

The calculation proceeds now along the following lines. 
The coordinate set consists of the quaternions. 

H, Q, and P, where 

H = He4 , 
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(5.1) 

It proves useful to define the dimensionless, vectorial 
quaternions 

u = Po(L + A):;' 
V = Po(L - A)·t;. 

(5.2) 

Then if the components of the vectors Y and Z are 
taken to be the components of the vectorial quaternions 
Y and Z, the generator of the group of transformations 
may be written as 

G = ~ [y·u + Z·V]. 
2po 

The algebra involved in expreSSing the differential 
equations of the group in terms of quaternions is 
straightforward, but tedious. The result is 

dB(s) = 0 
ds ' 

(5.3) 

dQ(s) = HZQ(s) - Q(s)Y] + K(s)P(S), (5.4) 
ds 

dP(s) = HZP(s) - P(s)Y] _ K(s)Q(s), 
ds 

where K(s) is a scalar quaternion given by 

dQ4(s) 
K(s) = ~ e4 • (5.5) 

Two relations that are particularly important are 

Q =PU =-VP, 

P =-QU =VQ. 
(5.6) 

Equations (5. 6) allow the Eqs. (5.4) to be rewritten in 
the more symmetrical manner 

dB(s) = 0; 
ds 

~s) = l [Z + It(s )V(s)]Q(s) -l Q(s )[Y + K(s )U(s)], (5. 7) 

~~s) = Uz + K(s )V(s )]P(s) - ! P(s) [Y + K(s )U(s)]. 

The solution to the above set of equations can be deduced 
by inspection and is 

H{s) = H(O), 

Q(s) =e(sl2)z[e[R(s)/2]V(O)Q(0)e-[R(s)/2]l1(olJe-~/2)Y, (5.8) 

pes) =e W2)Z (e[R~)/2]V (O)P(0)e-[R(S)/2]U (O)]e- ~/2)Y. 

In (5. 8) the function R ( s) is defined as 

and the exponential quaternion esl2Z is given by 

esl2Z =fco? IZVe +fSi? fzdZ ·e 

[ 2 J 4 r 2 Jlz/ 
with similar expressions for the other exponential 
terms. 

(5.9) 

(5.10) 
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Written in this form the solution is obviously implicit 
because of the appearance of one of the unknowns, 
Q 4 (s) on the right-hand side of the equations. The 
solution is complete nevertheless because Q 4 (s) can be 
solved for by inverting the scalar component of the 
equation for Q(s). The result can then be substituted 
in the appropriate places to yield the explicit solution. 
For our purposes though this inversion is not really a 
useful thing to do because, using elementary functions, 
it is not possible to express Q 4 as a function of s in 
closed form. 

At this point the parameter s can be set equal to unity. 
All the transformations of the group can be obtained by 
allowing the parameters Y and Z to vary appropriately 
in magnitude and direction. Equations (5.8) then are 
equivalent to 

H(Y, Z) = H(O), 

Q(Y, Z) = e Zl2 [e [R (Y, Z)/2]V (oQ(O)e-[R(Y,Z)/2]U (O)]e-Y!2, 

(5.11) 
P(Y, Z) = e Z/ 2 [e[R(Y,Z}/2]V (O)P(O)e-[R(y,Z)l2]U (0)1 e-Y/ 2 

where now 

(5.12) 

If one selects an arbitrary point in phase space, one can, 
by using Eqs. (3.12) and (5.11), transform to any other 
point in the phase space which lies on the same energy 
hypersurface as the initial point. The formal solution to 
the problem is thus complete. 

Using (5.6) and (5.11) one finds that the constants of 
the motion of the original orbit transform according to 

U(Y, Z) = e Y/2U(O)e-Y/ 2, 

V(Y, Z) = e Zl2V(O)e-Zl2 
(5.13) 

whence it follows that if Y a:: U(O) and Z a:: V(O) these 
quantities remain unchanged. In this case the orbit 
simply undergoes an automorphism. 

One further observation is called for. The fact that the 
coordinates used do not consist of canonically conjugate 
pairs makes it desirable to demonstrate that the under-

FIG.1. Finite motion of Q(O) to Q(Y, Z) pictured as an 
automorphism followed by a rigid rotation. 
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lying transformations of the q and p are in fact canoni
cal. One can prove by simple SUbstitution that Eqs. 
(5.11) leave invariant the differential form 

w = (-2mH)1/2 [P'dQ - dQ 4]' (5.14) 

In terms of the original dynamical variables, w is ex
pressable as 

w = p.aq - 2d(q·p). (5.15) 

The invariance of this form proves that the transforma
tions are canonical as they should be. 

6. GEOMETRIC INTERPRETATION OF THE 
TRANSFORMATIONS 

It may be tempting to conjecture that the symmetry 
transformations, when expressed in terms of the co
ordinates used here, should manifest themselves as 
rigid rotations on the respective spheres. The fact 
though that the differential equations (5.4) contain terms 
which are nonlinear in Q and P shows that the finite 
group motions are of a more complicated nature. A 
simple and direct geometriC interpretation of the trans
formations is pOSSible, however, in spite of the non
linear character of the problem. Since the equations for 
Q and P are structurally identical, we will confine our 
remarks to Q space. 

It is possible to write the transformation for Q formal
ly in terms of two equations. First we define the quan
tity Q by the relation 

Q = e[R(y,Z}/2]V(O)Q(O)e-[R(y,Z)/2]U(O). (6.1) 

Fro~ the considerations of the last section, it follows 
that Q and Q(O) lie in the same orbit. Using (6.1) now, 
the transformation for Q(Y,Z) can be written as 

Q(Y,Z) = e Z/ 2Qe-Y/2. (6.2) 

The nature of these last two equations is clear. Equa
tion (6.1) represents a rotation which repositions the 
initial point in the original orbit. Equation (6. ~) then 
describes a rotation of the intermediate point Q into the 
final point Q(Y, Z). The geometric representation of the 
transformation of Q is shown schematically in Fig. 1. 
The transformation of P can be sketched in the same 
manner. 

One concludes that the finite symmetry transformations 
of the Kepler problem, when expressed in term of Q and 
P, can be viewed as an automorphism of the original 
orbit followed by a rigid rotation of the original orbit 
into the new orbit. It should be noted that the auto
morphism of a particular point differs from that of 
other pOints in general. Thus the symmetry transfor
mations do not represent rigid mappings of the spheres 
into themselves. It is clear from this interpretation 
that orbits are mapped into orbits since, under the com
posite motion just described, circles are mapped into 
circles on the respective spheres. 
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The representation theory of the rotation group 0(3) is developed in a new basis, consisting of 
eigenfunctions of the operator E = - 4(L}2 + r~ 2), where 0 < r < I and Li are generators. This basis 
In.) is shown to be a unique nonequivalent alternative to the canonical basis (eigenfunctions of L,). 
The functions IJA) are constructed as linear combinations of canonical basis functions and are 
shown to fall into four symmetry classes. distinguished by their behavior under reflections of the 
inidividual space axes. Algebraic equations for the eigenvalues A of E are derived. When realized in 
terms of functions on an 0(3) sphere, the basis 1.fA) consists of products of two Lame polynomials, 
obtained by separating variables in the corresponding Laplace equation in elliptic coordinates. When 
realized in a space of functions of one complex variable, 1/'11.) are Heun polynomials. Applications of 
the new basis in elementary particle, nuclear. and molecular physics are pointed out. due in 
particular to the symmetric form of 1/'11.) as functions on a sphere and to the fact that they are the 
wavefunctions of an asymmetrical top. 

1. INTRODUCTION 

The three-dimensional rotation group 0(3). or its uni
versal covering group SU(2), is quite definitely the one 
single Lie group, which has the most extensive applica
tions in essentially all branches of physics. Not sur
prisingly the representation theory of 0(3) has received 
much attention and has been summarized in many ex
cellent books.l It would thus seem that the topic of re
presentations of the group 0(3) has received full cover
age and that little new can be added. 

The aim of this paper is to stress that this is not so and 
in particular to construct the representation theory of 
0(3) [and SU(2)] in a new basis,different from the "cano
nical" one, in which the basis functions are eigenfunc
tions of one of the generators of angular momentum, 
usually L 3 • A systematic investigation of possible bases 
for constructing representations of Lie groups was ini
tiated some time agO.2,3 It was shown that a classifica
tion of second order polynomials in the generators of a 
Lie group leads to a classification of different possible 
bases and that this problem is related to the problem of 
separating variables in Laplace equations on homo
geneous manifolds. A detailed treatment was given for 
the little groups of the Poincare group, corresponding 
to timelike, spacelike, and lightlike vectors [the groups 
0(3),0(2,1), and E 2' respectively]2,3 and also of thi 
Lorentz group 0(3,1) and the E3 Euclidean group. 

Two different baSes were shown to exist for 0(3). The 
first is the canonical one, which is a "subgroup type" 
baSiS, in that it corresponds to the group reduction 0(3) 
:J 0(2). The basis functions are eigenfunctions of the 
complete set of operators 

(1) 

where L· is the generator of rotations about the ith axis 
and ~ is'the Casimir operator of 0(3). The second basis 
is new it is of the "nonsubgroup" type, in that the basis 
functio'ns are eigenfunctions of an operator E that is not 
the generator of any subgroup and of some additional 
discrete operators. The complete set of commuting 
operators can be chosen to be 

~,E = - 4(Lf + rL~),X and PZ, 0< r < 1, 

where X and Z correspond to reflections in the yz and 
xy planes and P is the parity operator. 
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(2) 

Let us emphasize that a study of group representation 
theory in different bases is of interest both from the 
mathematical and physical pOints of view. The intimate 
connection between the representations of Lie groups 
and the special functions of mathematical physics has 
long been recognized (and treated in textbooks 5- lO). 
The special functions, actually appearing as basis func
tions, transformation matrices, kernels of integral 
transformations, Clebsch-Gordan coeffiCients, etc., 
depend not only on the group that is being conSidered, but 
also on the choice of basis. A systematic study of dif
ferent possible bases will thus very considerably en
large the class of special functions, that obtain a group 
theoretical interpretation and that can be studied using 
the powerful techniques of Lie theory. 

In particular, consider the rotation group 0(3). The con
nection between this group and the Legendre and Jacobi 
polynomials is well known and has been made full use 
of. Less well known is the fact that other important 
functions, namely the Lame polynomials,1l,12 and as 
we shall show below, a certain class of Heun functions12 
(distinct from the Lame polynomials), is equally inti
mately related to the rotation group. These polynomials 
make their appearance as basis functions in the non
subgroup type baSiS, determined by the operators (2). 

An alternative way of viewing the appearance of non
subgroup bases in general and the Lame polynomials in 
particular, is the following. For the group 0(3) the Lap
lace equation on the sphere ~1J; = J(J + 1)1J; allows the 
separation of variables in two coordinate systems.1 3 
The usual spherical coordinates correspond to the di
agonalization of the operators (1) and hence to spherical 
functions. Elliptic coordinates on the sphere (see below) 
correspond to the operators (2) and to the solutions of 
the Laplace equation which are also eigenfunctions of the 
operator E = - 4(L~ + r L~) and can be written as 

where a and ~ are the elliptic coordinates and AJh(a) 
are the Lame polynomials. 

(3) 

Let us mention some of the possible applications of 
nonsubgroup type bases in physics. The first applica
tion that comes to mind is due to the fact that the 0(3) 
basis functions (3) can be identified with the wavefunc
tions of an asymmetric quantum mechanical top and that 
the eigenvalues of the operator E are intimately related 
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to the energy levels of this physical system.14-19 The 
importance of these eigenfunctions and eigenvalues in 
nuclear physics 20 and molecular physics15 is obvious, 
since they make it possible to calculate energy levelS, 
transition probabilities, etc. for nonaxialnuclei or mole
cules). Lame and Heun functions of various types occur 
in numerous other physical problems like potential 
scattering, 21 the construction of solvable potentials in 
quantum mechanics, 22 the two-center Coulomb problem 
(Le., the Hi ion),23 quadrupole interactions of various 
types,16.24 etc. Further, the classification of second 
order operators, commuting with a Laplace operator, 
that lead to the consideration of nonsubgroup bases for 
group representations, has a direct application in the 
study of canonical transformations in quantum and 
classical mechanics. 25.26 

Finally, let us mention the applications of nonsubgroup 
bases in elementary particle physics, that actually lie 
at the root of our interest in such bases. A scattering 
amplitude for the reaction 1 + 2 ~ 3 + 4 is usually ex
panded in terms of the irreducible representations of 
0(3) (partial wave analysis27) for fixed energy s or 
0(2,1) (Regge pole theory 28) for fixed momentum trans
fer t. Alternatively, Lorentz invariance can be used to 
obtain two-variable expansions of amplitudes in terms 
of the irreducible unitary representations of the Lorentz 
group 0(3, 1) (a review containing references to older 
work is given in the lecture, Ref. 29;for more recent 
work see Refs. 30, 31). Nonsubgroup bases, on the other 
hand, make it possible to obtain explicitly crossing 
symmetric two-variable expansions. 30 Indeed,formula 
(3) shows that a separation of variables in elliptic co
ordinates on a sphere leads to basis functions that are 
products of two identical functions (that happen to be 
Lame polynomials). The same is true for certain types 
of elliptic coordinates on 0(2,1) and 0(3,1) hyperboloids,13 
where one obtains Lame functions (that are not poly
nomials). 

Another interesting application of the nonsubgroup basis 
for the 0(3) group in elementary particle physics is in 
strong coupling theory. Indeed, the problem of finding 
the spectrum of nucleon resonances in the strong coupl
ing limit of a fixed source pseudo scalar theory has been 
shown to be equivalent to the problem of diagonalizing 
the asymmetric top Hamiltonian. 32 A study of the rep
resentations of 0(3) in the nonsubgroup basis, should 
thus supply information on resonance masses and Widths, 
decay rates, etc., in the strong coupling theory. 

The rest of this paper is devoted to the representations 
of 0(3) in the nonsubgroup basis, corresponding to the 
diagonalization of the operators (2). In Sec. 2 we give a 
brief discussion of the algebra of 0(3), of second order 
operators in general and the operator E in particular. 
We show how E arises as a unique alternative to L3 as 
an operator, defining basis functions. In Sec. 3 we con
sider the eigenfunctions and eigenvalues of the operator 
E and construct the nonsubgroup type basis functions 
IJA) as sums of the usual angular momentum eigen
functions IJM). We derive recursion relations and 
general formulas for the coefficients in the correspond
ing expansions and also obtain algebraic equations for the 
eigenvalues A. We show that the basis functions naturally 
separate into four symmetry classes (with different pro
perties under reflections). In Sec. 4 we briefly mention 
the matrix elements of the generators in the new baSiS, 
"shifting operators" that are analogous to raising and 
lowering operators in the canonical baSiS, finite trans
formation matrices and Clebsch-Gordan coefficients. 
Half-integer values of angular momentum are discussed 
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in Sec. 5. In Sec. 6 we construct a two-dimensional reali
zation of the representations of 0(3) in a space of func
tions defined over the unit sphere. We show how the non
subgroup baSis leads to Lame functions. Section 7 is 
devoted to a one-dimensional realization in a space of 
functions of one complex variable. The basis functions 
in this case are Heun functions (polynomials) of a speci
fic type. In the final Sec. 8 we discuss some of the im
plications of our results and outline our future program, 
concerning the nonsubgroup type representation bases 
for 0(3) and for other groups, in particular the other 
little groups of the Poincare group. 

2. THE ALGEBRA OF 0(3) AND SECOND 
ORDER OPERATORS 

In order to establish notation, let us write out a few 
trivial formulas. The group 0(3) is generated by the 
operators L i , i = 1,2,3, satisfying the commutation 
relations 

[Li' Lkl = € iktLt . 

We shall also make use of the operators 

(4) 

The most general second order operator in the envelop
ing algebra of 0(3) can be written as 

3 

Q = ~ Ai~·Lk 
i.k=l ' 

(6) 

and without loss of generality we can restrict ourselves 
to symmetric operators, satisfying Aik = Aki (Le.,A is 
a real symmetric matrix). 

The operator Q can be simplified3 by an inner automor
phism, Le., by a rotation, that transforms Q into some 
operator Q' and by taking linear combinations of Q' 
and t::... 

We are interested in bases for the representations of 
0(3). Any first order operator in the algebra can be 
rotated into say L 3 • Hence, basis functions defined as 
eigenfunctions of a first order operator will simply con
stitute a canonical basis. Let us now consider eigen
functions of the second order "diagonal" operator Q', 
which can be so chosen that the corresponding matrix 
A' is diagonal.33 Three distinct cases arise: (i) All 
eigenvalues of A are equal. Then Q' - t::.. and does not 
determine a basis. (li) Only two of the eigenvalues are 
equal. Then Q can be transformed into L~, so its eigen
functions will again constitute a canonical basis. (iii) All 
eig.envalues of A are distinct. Then Q can be trans
formed into E, defined in (2). Thus, in this case we do 
obtain a new operator and the rest of this paper will be 
devoted to an investigation of the basis, conSisting of the 
eigenfunctions of this operator: 

E = - 4(L~ + r L~) = (1 - r)(H~ + H~) 
+ 2(1 + r)[J(J + 1) - H~]. (7) 

We have not been able to discover any particularly il
luminating algebraic properties of the operator E. For 
instance, we have not succeeded in finding any closed 
subalgebras in the enveloping algebra of 0(3), involving 
operator E. The importance of E is thus not in its alge
braic properties, but in the fact that it represents a 
unique alternative to L3 in a possible complete set of 
commuting operators, defining a basis. 



                                                                                                                                    

1132 J. Patera and P. Winternitz: A new basis 

3. THE NONSUBGROUP BASIS FUNCTIONS AND 
SPECTRUM OF THE OPERATOR E 

A. Expansion of the nonsubgroup basis in terms of the 
canonical one 

The canonical basis IJM) for 0(3) is defined by the 
usual relation 

Hi I JM) = [(J~ M)(J ± M + 1»)1/21 JM ± 1), 

H3IJM) =MIJM). 

The nonsubgroup basis I JX) satisfies 

E I J X) = xl JX) , 

(8) 

(9) 

and our first aim is to find the spectrum of E,i.e.,the 
values of X, for which the basis functions form a com
plete orthonormal set, and also to construct the functions 
I JX). 

Let us expand I J X) in terms of I JM): 

.I 
IJX) = :6 (X.I),\MIJM). (10) 

M=-.I 

The expansion coefficients are elements of a (2J + 1)
dimensional matrix and we shall obtain recursion re
lations for them. Indeed, let us apply the operator E 
to both sides of (10). Using (7) and (8) we have 

E I JM) = A M I JM + 2) + B M I JM) + A M-21 JM - 2) 
(11) 

with 

AM = (1 - r)[(J - M)(J + M + 1) 

X(J-M-1)(J +M + 2)]112, (12) 

B M = 2(1 + r)[J(J + 1) - M2]. 

The coefficients in (11) obey the following symmetry 
relations: 

Applying (E - X) to both sides of (10), we have 

(E - X) I JX) =:6 {(X.I),\ M-2 A M-2 
M . 

(13) 

(14) 

+ (X.I),\,~BM-X) + (X.I),\,M+2A M}IJM) 

= O. (15) 

Equation (15) implies a three-term recursion relation 
for the matrix elements of X .I: 

B. Eigenvalues of E and discussion of the recursion 
relations for integer values of J 

From now on unless we specifically state the opposite, 
we shall assume that J is integer. The recursion rela
tions (15) can be rewritten in the form of two sets of 
homogeneous linear equations for the coefficients 
(X .I) ,\ ,M' starting from M = J we have 

X ,\jB.I - X) + X '\,.I-2A.I-2 = 0, 

X ,\ . .IA.I-2 + X ,\ . .I-2(B .I-2 - X) + X ,\ . .I-4A.I-4 = 0, 

XX,-.I+2AJ-2 + X '\,-J(B .I - X) = O. 
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starting from M = J - 1 we obtain a supplementary sys
tem of equations: 

X,\,.I-l(B .I- 1 -X) +X,\,.I-3A.I-3 = 0, 

X,\ ,J-l A .I- 3 + X,\ . .I-3(B J-3 - X) + X,\ ,J-5A.I-5 = 0, (18) 

X,\ .-.I+ 3A ./-3 + X,\ ,-./+1 (B .I-I - X) = O. 

We have made use of the symmetries (14) and simplified 
notations by putting (X;) '\.M = X,\ .M' 

The condition for Eqs. (17) and (18) to have a nontrivial 
solution is that the determinants of these two sets of 
homogeneous linear equations be equal to zero. This 
condition immediately provides us with algebraic equa
tions for the eigenvalues X of the operator E. The situa
tion can be further Simplified by noting that the Eqs. (17) 
and (18) are consistent with the symmetry conditions 

X,\,-M =PX,\,M' P = ± 1. (19) 

For any given value of J, we obtain four different secular 
equations for the eigenvalues X, which thus fall into four 
classes. We shall denote these classes (p, q), where p = 
± 1 as in (19) and q = (- l)M. Let us consider the equa
tions in the individual classes: 

(i) (pq) = (++),i.e.,M= even, X,\,-M =X,\,M' 

(B A-X) A K- 2 

A K-2 (B A-2 - x) A K-4 

= 0 (20) 

(B 2 - X) Ao 

2Ao (Bo - X) 

where 

{
J for J = even 

K-
J - 1 for J = odd. 

(ii) (pq) = (-+),Le.,M = even, X'\,-M = -X>...M' 

(BA-X) AA-2 

(B K-2 - X) AA-4 = 0, 
A4 (B 4 -X) 

A2 

with K as in (21) 

(iii) (pq) = (p-),i.e.,M = odd, X,\,_M=PX>...M' 

(B B - X) Alr2 

Alr2 (B 1r2 - X) Alr5 

= 0, 

A3 (B3-X) Al 

Al (Bl +pA_1 -X) 

with R = J for J odd and R = J - 1 for J even. 

(21) 

(22) 

(23) 

The coefficients A M and B M in the above determinants 
are given by \12) and (13), all omitted entries are equal 
to zero. For numerical calculations it may be convenient 
to replace (X./),\.M in (10) by a new coefficient (Y./),\.M' 
putting . 
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We then obtain an equivalent set of secular equatiolB for 
the eigenvalues A. These equations will be less sym
metric than (20)-(23), but all the coefficients in the 
determinants will be integers multiplied by (1 - r) or 
(1 + r) (in other words, we get rid of the square roots). 

C. General properties of the eigenvalues 
and eigenfunctions 

The eigenvalues A are thus obtained by solving certain 
algebraic equations given above. For each integer value 
of J, we obtain 2.1 + 1 different values of A. They are 
functions of the parameter r in (7) and, in general, they 
are not integers and are not equally spaced. The eigen
values can be evaluated explicitly as functions of r for 
low values of J. Indeed for J:s 3 we need only solve 
quadratic equations, the case 3 < J:s 7 involves cubic 
and quartic ones. For J 2:: 8 the equations must be 
solved numerically for each value of r. The eigenvalues 
A are directly related to the eigenvalues of the equation 
for Lame polynomials, which have been extensively 
tabulated (for more details, see Sec. 6). 

Several properties of the eigenvalues A are of interest: 

(i) Sums of eigenvalues. It follows directly from the 
secular equations (20), (22), and (23) that the sum of all 
eigenvalues within each class is equal to the sum of all 
diagonal coefficients in the corresponding determinant. 
We thus have 

~ A = ~(1 + r)J(J + I)(J + 2), 
AE(++) 

~ X = ~(1 + r)(J - 1)J(J + 1), 
AE(-+) 

(24) 
~ X = j(1 + r)J(J + 1)(2.1 + 1) + (1 -r)J(J + 1), 

AE(+-) 

~ X = j(1 + r)J(J + 1)(2.1 + 1) - (1 -r)J(J + 1). 
AE(--) 

(ii) Symmetry under replacement r ~ l/r. If we put 
E(r) = - 4(L~ + r L~), then E(1/r) = - (1/r)4(r L~ + L~). 
Hence, if X(r) is an eigenvalue, then so is rX(I/r) and the 
two mayor may not coincide. From (20) and (22) we see 
that for M even, the eigenvalue equation contains only 
even powers of A¥" We have A M(1/r) = - (1/r)A M(r) 
and B ~1/r) = (1/r)B M(r). For M odd the term pA_1 in 
(23) spoils the symmetry. It follows that the eigenvalues 
satisfy 

rX(1/r) = X(r) for M = even, 
rX 1 (1/r) = 'X 2(r) '" Xl (r) for M = odd, 

(25) 

where X2(r) is also an eigenvalue of the operator E(r) 
corresponding to the same J;if X1 (r) belongs to a state 
from the subspace (pq), then X2(r) belongs to (- pq). 

(iii) Limiting values of X(r). For r ~ 0 or r ~ 1 the 
"elliptic" basis reduces to a canonical one. Obviously 
we have 

X(r) ~ 4M2, X(r) ~ 4[J(J+1)-M2]. (26) 
.. ->0 .. ->1 

It is only in these limiting cases that the eigenvalues 
X(r) become degenerate (a twofold degeneracy for M'" 0). 

Having calculated the eigenvalues X, we can easily obtain 
the baSis functions I JA), or rather the expansion coeffi
cientsXA.Min (10),by solving Eqs.(17) and (18). Indeed, 
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let us impose the symmetries (19), eliminate all equa
tions containing X A.M with M < 0 and obtain separate 
equations for each class (pq). If X is an eigenvalue, then 
we obtain consistent sets of homogeneous equations, 
which means that in each class we can eliminate one 
equation. Let us eliminate the last equation in each 
class, i.e., the one containing (B 0 - X)X A 0 in the (++) 
class (B 2 - X)X A.2 in the (-+) one and (B1 + pA_1 - X) 
X A.1 in the (p-) classes. All four systems of equations 
then have the same structure and can be used to express 
all X A.M in terms of the "highest" one, i.e.,X A.K or X A.R' 
The general formula can be written in a somewhat sym
bolic form, which should however be useful for computer 
calculations. For M even, i.e., for the classes (p +), we 
have 

where 

k = 0,2,4"'K - 2 for class (++), 

k=0,2,4"'K-4 for class (-+). 

For M odd, i.e., for the classes (p -) we have 

where 

k = 0,2,4, •.. , R - 3. 

In the above formulas we have 

DM = (X -BM)/(AM- 2), EM = - (AM-2)/(AM-4)' 

(28) 

(30) 

(31) 

The basis functions in the individual classes can finally 
be expressed as 

K 

IJX ++) = {X+AoIJO) + ~ X'>..M{IJM) + IJ-M)}, 
M=2.4.··· 

K 

IJX-+)= ~ X-AM{IJM)-IJ-M)}. (32) 
M=2.4.··· 

R 

I JXp -) = ~ X~M{ I JM) + pi J - M)}. 
M=1.3.··· 

Formulas (32) can be combined into one expression, 
putting 

I JXpq) = ~ (XS) Uk>1/2-q/2 

X~IJ,2k +t-i) +P\J,-2k-t+i)l, (33) 

with 

(X1) A.211+1/2-q/2 = KkqX t2k+l/2-q/2' 

KO+ = ~ , Kllq = 1 (k '" 0, q '" +). (34) 

yve choose the constants X ~.K and X A.~ in (27) and (29) 
In such a way as to normallze the functions 
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(J'",,-'p'q'l J",,-pq) = 0u'o H,OpP,Oqq" (35) 

Notice also that the functions I J""-pq) are real if the 
coefficients satisfy 

(XS)tM = pq(X~) A.M' (36) 

Since both the left and right hand sides of (36) satisfy 
Eqs. (17) and (18), the reality condition (36) can always 
be imposed. 

The notation I J",,-pq) is actually somewhat redundant, in 
that the functions I J",,-) are, at least for integer values of 
J, not degenerate (see Sec. 6 for half-integer spins). The 
value of ""- itself characterizes the symmetry class of the 
eigenfunction. In view of the importance of the symmetry 
properties of the basis functions we prefer to indicate 
the class explicitly. 

D. Inversion of expansion 

Formula (33) provides an expansion of the nonsubgroup 
basis functions in terms of the canonical ones. The ex
pansion can easily be inverted. Ignoring,for a moment, 
the individual classes of functions, we can write 

I J",,-) =:0 Xi MI JM), 
M • 

where X is a (2.1 + l)-dimensional matrix. Since both 
I JM) and I J",,-) form orthonormal sets, the matrix X 
must be unitary X-1 = X+ • 

Hence we have 

I JM) =:0 X'{*M I JA), 
A • 

(37) 

where the sum is over all values of ""-. 

~ithin each class (pq) we can invert (33) to obtain 

I 
1 q 1 q 

J,2K+'2-'2) +pIJ,-2K-'2+'2) 

=L?(X/)~.2k+1/2-q/2IJ",,-pq), (38) 

where the star denotes complex conjugation and the sum 
is over all""-'s in the class (pq). 

E. Comments on the symmetry classes 

The investigation of the expansion (10) of the eigenfunc
tions IJ'\') and of the recursion relations (17) and (18) 
for the expansion coefficients has lead to the introduc
tion of four classes of functions IJ",,-pq) with p = ± and 
q = ±. Each class can be characterized by its behavior 
under reflections, i.e., the set of operators A and E, 
determining the eigenfunctions, should be supplemented 
by certain discrete reflection operators. 

Let us assume that the canonical basis functions (for 
integer J) IJM) have the usual properties under reflec
tions, i.e., the properties of the spherical harmonics 
YJM(e, cp). These are: 

(i) Parity P : x ~ - x ,Y ~ - Y, z ~ - z 

P IJM) = (-IF IJM). 

(ii) Reflection in xy plane Z: x ~ x,Y ~ y, z~ - z 

ZIJM) = (- l)J-MIJM). 

(iii) Reflectioninyz planeX:x~-x,y ~y,z~z 

XIJM) = IJ -M). 
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Applying these discrete operators to both sides of ex
pansion (33), we find 

P IJ",,-pq) = (- l)J IJ">.jJq), 

ZIJ">.jJq) = (-l)Jq IJ">.jJq), 

X IJ">.jJq) = p IJ">.jJq), 

Y IJ",,-pq) = pq IJ">.jJq). 

(39) 

The complete set of operators, defining the 0(3) basis 
functions in the nonsubgroup basis can finally be writ
ten as 

A IJ",,-pq) = J(J + 1) IJ">.jJq), 

E IJ",,-pq) = ""-IJ">.jJq), 

X IJ",,-pq) = p IJ">.jJq), 

XY IJ""-pq) = q IJ">.jJq). 

As we mentioned in the Introduction, the functions 

(40) 

IJ">.jJq) can be identified with the wave functions of the 
quantum-mechanical asymmetric top. These are usu
ally divided into four symmetry classes,14 transform
ing according to the irreducible representations A,B l' 
B 2 , and B 3 of the discrete group D2 , consisting of the 
identity e and the rotations through 7r about the x ,y , and 
z axes (i.e., of e and the reflections Y Z,XZ, and XY). 
The two classifications are clearly equivalent, since we 
have YZ = (- l)Jp,XZ = (- l)Jpq, and XY = q. The 
classification (40) may be somewhat more straight
forward and can be directly generalized to other groups. 
Indeed, a very Similar classification of nonsubgroup 
type basis functions was obtained previously30 for the 
group 0(2, 1). 

Finally, let us give the number of states in each class: 

J = even: f + 1 states in class (++), 

f states in all other classes. 

J= odd: J-1 
~ states in class (-+), 

J+1 2 states in all other classes. 

F. Examples 

In order to elucidate the above considerations let us 
consider two simple but nontrivial examples. 

J = 1: 

In1++) = 110), ""-1 = 4(1 + r), 

""-2 = 4 

""-3 = 4r 

I n 2+-) = 2-1/ 2 [ 111) + 11 - 1)], 

I n 3--) = 2-1/ 2 [111) - 11 - 1)]. 

J= 2: 

""-1.2 = 8[1 + r ± (r 2 - r + 1)1/2], 

12",,-1.2++) = (31/2/2)(1 - r)(r2 - r + 1)-1/4 

x [2(r2 - r + 1)1/2 'f (1 + r)]-1/2 

x {120) + - (1 + r) ±2(r2 - r + 1)1/2 
.J6(1 - r) 

x (122) + 12 - 2)J}, 

(41) 
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A3 = 4(4 + r), 
A4 = 4(1 + r), 
A5 = 4(1 + 4r), 

12A3+-) = 2-1/ 2 [121) + 12-1)], 

12Ac+) = 2-1 / 2 [ 122) - 12 - 2)], 

12A5--) = 2""1/2[ 121) - 12 - 1)]. 

It can easily be checked that these eigenfunctions are 
orthogonal and normalized and that the eigenvalues 
satisfy the general properties (24)-(26). 

4. MATRIX ELEMENTS OF GENERATORS, D 
FUNCTIONS, AND CLEBSCH-GORDAN 
COEFFICIENTS 

(42) 

In order to establish how the generators H± and H3 act 
on the basis that we have constructed, one uses the ex
pansion (33), the inverse expansion (38), and formulas 
(8) which give the matrix elements of the generators in 
the canonical basis. The matrix elements in the non
subgroup type basis are then expressed as functions of 
the coefficients Xl which themselves are known only 
when the eigenvalues A have been found. As a conse
quence, raising and lowering operators can be defined, 
but they are not as useful as in the case of the canonical 
baSiS, since they involve the coefficients Xl. Thus the 
eigenvalue problem of Sec. 2 must be solved completely, 
before formulas generating arbitrary basis vectors from 
a given one can be written. These formulas are lengthy 
and not particularly illuminating, so we do not present 
them here. Figure 1 summarizes how H3 and 11.- ± R 
shift vectors between the classes (pq). 

The standard parametrization of the rotation group in 
terms of Euler angles is convenient for calculating 
matrix elements of finite transformations in the canoni
cal baSiS, because the operator L3 is diagonal. Since 
none of the generators is diagonal in the nonsubgroup 
baSiS, it is difficult to find a straightforward similarly 
convenient parametrization of the group. Therefore we 
make use of the Euler angles cp, e, and 1/1, putting 

Dfpq,XP'q,(CP, e,1/I) = (J>.pq le-iL:J<Pe-iL.!6e-iL31/1 IJA'p'q'). 

(43) 
Using expansion (33) one easily finds the matrix ele
mpents Dfpq .A'p'q'(CP, e, 1/1) and the expansion coefficients 
XJ. 

Similarly as the D functions, the Clebsch-Gordan coef
ficients in the nonsubgroup basis can also be expressed 
in terms of the corresponding quantities in the canoni-

0 ___ H 
+ H .. 0 + 

I ~ / t 

I' 
H - H H3 .. 

/ ~ j 

D .. H .. + H .. D 
FIG.1. Action of the generators of 0(3) on the individual symmetry 

classes of nonsubgroup basis functions. 
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cal basis. Let us define the Clebsch-Gordan coefficients 
by the relation 

IJ1 A1P1q1) IJ2A~2q2) = ~ (J1 A1P1q1 J2A~2q2IJ>.pq) !J>.pq). 
nH (W 

Expanding both sides in terms of the canonical baSiS, we 
find 

(J1AIPlq1 J2AozP2q2IJ>.pq) = o[P,P1P2(- 1)JI+J2 -J]o(q,qlq2) 

X ~ {(X~I)AI.MI(X~2h2.M2 
M}2:0;M22!O 

x (Xl)~'M1+M2 (J1M1J'2fv12!JM1 + M2) 

+ P2 (Xl11) 1..1 .MI (Xl;) 1..2 .M2 (Xl)~ .MI- M2 

x (J1M1J2 - M2 !JM1 - M2) 

x [P e(- M1 + M2) + e(M1 - M2 - 1)]}. (45) 

Here o(a, b) denotes the Kronecker delta 0ab' 
(J1M1J'2fv1? !JM) are the usual Clebsch-Gordan coeffi
cients, elN) = 1 for N ~ 0 and e(N) = 0 for N < O. It 
is a trivial matter to verify the symmetry 

(J1A1P1q1 J2A~2q2!J>.pq) 

= (-1)JI+J2-J(J2A~2q2 JiA1Ptfh !J>.pq), (46) 

as well as the fact that the Clebsch-Gordan coefficients 
are alternatively real and pure imaginary, if we adopt 
the convention (36) for all basis functions: 

(J1 A1Ptq1 J2A~2q2!JAPq)* 

= (-1)J1+J2-J(J1A1Ptq1 J2AozP2q2!JAPq). (47) 

The orthogonality conditions for the Clebsch-Gordan 
coefficients follow in the usual manner from the ortho
gonality of the basis. Finally, let us make a comment on 
the ranges of summation. In actual fact, only the J sum
mation (!J1 - J2 ! ~ J ~ J + J 2) is present in (44) since 
the Kronecker deltas in (45) prescribe the values of P 
and q, For each given J (and fixed indices on the left 
hand side) A can have only one value. This value can be 
obtained by applying the operator E to both sides of (44) 
and then multiplying by (JAPq ! • 

5. HALF-INTEGER VALUES OF ANGULAR 
MOMENTUM 

The nonsubgroup basis can also be used for half-integer 
spin representations, but some modifications are neces
sary. The most important change is that the spectrum 
of A becomes two-fold degenerate. Indeed, the coeffi
cients (XJhM of (10) still satisfy the recursion relation 
(16), however, the systems of linear equations (17) and 
(18) for half-odd-integer J have the form 

XA.J(BJ - A) + XA.J-~J-2' 
X A.JAJ- 2 + XA.J-2(BJ-2 - >.) + XA,J-4AJ-4' 

and 

XA.J-1 (BJ-1 - A) + Xl.. ,J-:0-J-3 = 0, 

XA.J-IAJ-3 + XA.J-3(BJ-3 - A) + X A.J-0J-5 = 0, 

= 0, 

= 0, 
(48) 

(49) 
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Remembering that A_M = AM- 2 and B-M = BM, (14), we 
see that the systems (48) and (49) coincide and hence 
each eigenvalue X will occur twice. 

The degeneracy can be lifted by introducing the dis
crete symmetries of Sec. 3E. We can put 

p IJM) = 71(- 1)[J] IJM), 

X IJM) = 71 IJ - M), 

z IJM) = 71(- l)[J]-[M] IJM), 

y IJM) = 71(- l)[Ml IJ - M), 
(50) 

where 71 is an intrinsic parity and [K] = K - t for K 
half-odd-integer. 

The two eigenfunctions corresponding to each given X 
can be chosen to be eigenfunctions of the X reflection, 
and can be labelled by the symbol p. 

The functions 

IJXp) = I; (X},.M {IJM) + P IJ - M)} 
M2:0 

(51) 

are again eigenfunctions of the complete set of commut
ing operators ~,E, and X, as in (40), not however of XY, 
so there is no point in introducing the label q (e.g., as 
q = (- l)[Ml) for half-odd-integer J. The matrix ele
ments of generators, shifting operators, D functions, 
Clebsch-Gordan coefficients, etc. will be given by simi
lar formulas as in the integer case; we shall, however, 
not go into the details. 

From the point of view of actual computations there is 
another important difference. In the integer case, func
tions with P = ± 1 corresponded to different values of 
X, whereas in the half-integer case IJXp) and IJX - p) 
correspond to the same X. The secular equation for X 
in the integer case reduced to four separate algebraic 
equations, whereas for half-odd-integer J it reduces 
only to two. We noted in Sec. 3C that the eigenvalues X 
could be obtained by solving equations of order less or 
equal to 4 for J:s 7. For half-odd-integer spins the 
situation is less favorable. Indeed,J = ~ leads to a 
quadratic equation and J = ~ and ~ to cubic and quartic 
ones, respectively, 

We can of course again sum all the eigenvalues X for a 
given value of J. Since there are only two classes (P = 
± 1) and since the values of X coincide in both classes, 
let us just give the sum over all eigenvalues: 

E X = (1 + r) ~J(J + 1)(2J + 1), (52) 
AEall 

which coincides with the corresponding formula for inte
ger spin. Also note that for half-integer J we always 
have 

rX(l/r) = x(r) 

and that (26) remains valid. 

As an example, consider J =~. We have 

Xl = X2 == X = 5(1 + r) + 4(r2 - r + 1)1/2, 

IJxP) = N1{ [IH) + p I~ - ~)] 
1 + r + 2(r2 - r + 1)1/2 3 1 ~ + P [ I 2 2) + p 1 ~ - t>] • 

$(1 - r) 

X3 = X4 == X' == 5(1 + r) - 4(r2 - r + 1)1/2, 

IJX'p) = N2 {[ IH) + p I~ - ~)] 
+ p 1 + r - 2(r2 - r + 1)1/2 } 

$(1 _ r) [I ~ t) + p 1 ~ - t)] , 
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where 

N _ $(l-r) 
12-

, 2v'2I2(r2 - r + 1) ± (r2 - r + 1)1/2]1/2. 

6. REALIZATION OF THE REPRESENTATIONS ON A 
THREE·DIMENSIONAL SPHERE 

All our previous considerations concerning the IJXpq) 
basis were model independent, i.e., did not depend on the 
space in which the representations are realized. In this 
section and the following one we shall consider two spe
cific models and discuss the realization of IJXPq) in 
terms of special functions. 

Let us consider a Hilbert space of functions F(x) de
fined over a unit sphere and satisfying 

J IF(x) 12 ~ dJ7. < CO, 

x3 

where the integration is over the entire sphere and 
(dx1dx2)/x3 is the invariant measure. 

(53) 

As was mentioned in the Introduction, two coordinate 
systems exist on the sphere, for which the Laplace equa
tion AIJI(x) = J(J + l)1/1(x) (with J integer) allows the 
separation of variables.13 The first are spherical coor
dinates and the separation of variables leads to the cano
nical basis for 0(3), realized as spherical harmonics,l 
i.e.,IJM ) = ~M(e, CPl. 

Let us now consider the second type of separable coor
dinates, namely elliptic ones. 

A. Elliptic coordinates and the generators of 0(3) 

Elliptic coordinates on a sphere have been considered 
in several different but equivalent forms. 

An algebraic form is 

2 (a - PJ.)(a - p,z) (Pt - b)(b - p,z) 
Xl = (a _ e )(a _ b)' x~ = (b - e)(a - b) , 

x~ __ (Pt - e)(p,z - e) , 
e<n...<b<n.<a 

(a-e)(b-e) ...-,.: "".1. 

(a, b, and e are real parameters). 

Putting 

(54) 

(a - Pt) = (a - b) cos21J;, b - P2 = (b - e) sin2T/, 

we obtain a trigonometric form 

XJ. = cos1J;(l - k'2 COS2T/)1/2, x2 = sin1J; sinT/, 

x3 = cosT/(l - k 2 cos21J;)1/2, 

O:s T/:S 1T, 0 :s 1J; < 21T, (55) 

k2 = (a - b)/(a - e), k'2 = (b - e)/(a - e). 

Putting 

(a - Pt) = (a - b) sn2(0!, k), b - p,z = (b - e) cn2(,B, k'), 

we obtain a Jacobi elliptic form 

XJ. = sn(O!, k)dn(,B, k'), x2 = cn(O!, k)cn(fl, k'), 

x3 = dn(O!, k)sn(fl, k'), - K:s O! :s K, 

- 2K':s fl:S 2K', (56) 

k2 + k'2 = 1, O:s k:s 1, O:s k':s 1. 
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Here,e.g.,sn(a,k), cn(a,k),and dn(a,k) are Jacobi 
elliptic functions 34 of argument a and modulus k. Their 
real quarter-period K is determined uniquely as a func
tion of k[k and k' are the same as in (55)]. 

Other forms of elliptic coordinates exist, but we shall 
further use only (56). It is easy to see that the coordin
ates a and (3 in the regions indicated in (56) cover the 
whole sphere once. Note that under the reflection [a ~ 
- a the function sn(a, k) is antisymmetric, whereas 
cn(a,k) and dn(a,k) are symmetric]. Thus the reflec
tions of a and {3 are related to the reflections of Sec. 3E, 
namely 

a ~ - a , {3 ~ {3 is X, 

a ~ a, (3 ~ - (3 is Z, 

a ~ - a, {3 ~ (3 + 2K' is P' 

The generators of 0(3) can be written as differential 
operators and are 

1 
Ll = -----"'-------

k 2 cn2a + k'2 cn2{3 

(57) 

x {- k'2 SM cn{3 sn{3 l.... - coo dna dn{3 ~} 
oa 0{3 , 

1 
L2 = -------

lz2 cn2a + k'2 cn2{3 

x {- cna sn{3 dn{3 ~ + sna dna cn{3 ~}, (58) 
oa a{3 

1 
L3 = ----=----

lz2 cn2a + k'2 cn2(3 

x {dna cn{3 dn{3 ~ + k 2 sna cna sn{3 ~} 
oa 0{3 

(we have dropped the moduli in the elliptic functions). 

B. The complete set of commuting operators and Lame 
polynomials 

The operators A and E of (2) can readily be written as 
differential operators: 

A = - k 2 cn2(a, k) + ~'2 cn2({3, k') [0:
22 

+ a~:J, 
E = _______ 4 ____ _ 

k 2 cn2(a, k) + k'2 cn2({3, k') 
(59) 

x [k'2 sn2 ({3 k') £ + dn2 (a k) EJ 
' oa 2 '0{32 ' 

with 

k'2 =r,k2 = 1-r. 

The equations 

Al/IJA(a, (3) = J(J + 1)l/IJA(a, (3), 

El/IJA (a, (3) = >"l/IJA (a, (3) (60) 

have a complete set of common solutions which we 
write as 

d2A (a) >.. 
JA + [ __ +J(J + 1) 

da 2 4 
-J(J + 1)k2 sn2 (a,k)]AJA(a) = 0, 
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JA + __ J(J + 1)k'2 sn2 «(3, k') BJA({3) = O. (61) d
2
B ((3) [X ~ 
d{32 4 

Both these equations are the Lam~ equation in its Jaco
bian form. ll •12 The ordinary differential equations (61) 
must be supplemented by boundary conditions. In 
agreement with the general theory of Sec. 3 we use the 
boundary conditions to choose solutions that have the 
proper symmetry properties with respect to the reflec
tions X and XY [see (40) and (57)]. Finally, we have 

IJ>..pq) = A~h(a) A~h,({3), h + h' = J(J + 1), (62) 

where A~h (a) is a Lam~ polynomial satisfying 

d2~h(a) 
-""""'-----:-- + [h -J(J + 1)k2 sn2(a,k)]A~h(a) = 0, 

da 2 

~h(- a) = PA~h(a), k 2 = 1 - r J (63) 
>.. 

h = ~ - + J(J + 1). 
4 

The function A~h,({3) satisfies the same equations (with 
a ~ (3, k ~ k', h ~ h' = >../4 and p ~ q). 

The normalization is such that 

----- fK 2K (J>"pq IJ>..pq) = da f d{3(k 2 cn2 (a, k) 
-K -2K 

+ k'2 cn2 ({3, k'»A~ *(a)AJ;({3) 

x ~h(a)A~h,({3) = OJJOhhOppOqq. (64) 

Note that the symmetry (63) implies only that 

.E.... [Ajh(a)]la=o = 0, AJ-h(O) = O. (65) 
da 

The values of Ajh(O) and AJ-~(O) == d/da[AJ-A(a)] la=O must 
be so chosen that (64) is satisfied. This still leaves an 
arbitrary phase, which can be fixed, e.g., by taking 
Ah,(O) and A;;;"(O) to be real. The Lam~ polynomials 
themselves will then be real and the expansion coeffi
cients (Xj)A.M of Sec. 3 will satisfy the reality condi
tion (36). 

Thus, the nonsubgroup type basis functions in this model 
turn out to be well-known functions-the Lam~ polyno
mials. The corresponding eigenvalues>.. as well as the 
functions themselves have been tabulated for a large 
range of values of J and r3 5. 

The functions IJ>..pq) of (62) are called ellipsoidal 
harmonics. One of their useful applications is to pro
vide symmetric expansions of functions, defined over a 
sphere. Indeed, for any function F(x) = F(a, (3) satisfy
ing (53), we can write 

00 

F(a,{3) = L) L) L) A~: A~h(a)A~h,({3), 
J=O A p,q 

(66) 

where 

K 2K 
AS: = f da f d{3[k2 cn2 (a, k) + k'2 cn2 ({3, k')] 

-K -2K 

XF(a,{3)A~:(a)A;,~,({3). (67) 

Symmetry conditions like 

F(a,{3) = ± F({3,a) 

can be imposed by putting 

APq Aqp 
'.Jh = ± ;lh" (68) 
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Precisely this type of expansion has been used30 to pro
vide crossing symmetric expansions of physical scat
tering amplitudes in terms of products of Lam~ func
tions (not polynomials), that occur as basis functions for 
irreducible representations of 0(2, 1) in a nonsubgroup 
basis. 

7. ONE-DIMENSIONAL REALIZATION OF THE 
R EPR ESENT ATIONS 

Let us consider a space of polynomials!(z) of order 
less or equal to 2J of one complex variable. 5.7 An in
variant scalar product is so defined that 

(XJ-M,XJ-N) = (J-M)I(J +M)16MN • 

Representations of 0(3) can be constructed in this space 
and the canonical basis is realized by the functions 

IJM) = ____ Z_J_-M ___ :
[(J-M)I(J +M)!]1/2' 

-J::sM::SJ. 

The generators of 0(3) in this realization are 

d 14=-, 
dz 

d H = 2Jz -z2-
- dz' 

d 
H3=J-z -

dz 

(69) 

(70) 

Let us now construct the nonsubgroup basis. The opera
tor E can be written as 

E = [(1 - .Ji}z2 - (1 + .Ji}][(1 + .,fi)z2 - (1 _ .,fi)] d
2 

dz 2 

+ (2:1 - 1)2z[1 + r - z2(1 - r)] !:.. 
dz 

+ 2J[1 + r + (1 - r)(2J - 1)z2]. (71) 

The basis functions are determined by the condition 

(72) 

However, let us make the substitution 

Y = [(1 - .,fY)/(1 + .,fY)]z2, (73) 

and put 

lJIJ>..(z) = </>n..(Y)' (74) 

Substituting (71) into (72) we obtain an equation for the 
basis functions 

~ </>n..<y) +( r. + _6 - + _10_1 .!!.. </>n..(Y) 
dy2 y y - 1 Y - a 2J dy 

+ OI{3y - q ,.. ( ) _ 0 (75) 
Y (y _ l)(y _ a2) 't'J>" y - , 

where 

y = i, 01 = li = 10 = - J +!, (3 = - J, 

q = - ts[4J(1 + a2) - (1 + a)2~], 

a = [(1 - .,fY)/(1 + .,fY)]. 

(76) 

Equation (75) is the general form of the Heun equation12 
and when the parameters satisfy (76) its solutions are, 
by construction, polynomials in z. Note that the Lam~ 
equation is obtained from the Heun one if y = 6 = 10 = ! . 
Another useful transformation of Eq. (72) is obtained by 
putting 

(
1 .,fi )1/2 

tV = 1:;- z = .J(iz, (77) 
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we then obtain 

d 2 XJ d (1 - w2)(a4 - w 2) -_>.. + (2J - 1)w(1 + a4 _ 2w2) XJ>.. 
dw 2 dw 

2(2J - 1) 
- J + 1 [h - J(J + 1)w2]XJ>.. = 0, (78) 

with 

h = (J + 1)[(1 + a2)2~ - 4J(1 + a 4 )] • 

8(2J - 1) 

The symmetries of Eqs. (72), (75), and (78) are not 
immediately apparent; however, from the results of 
Sec.3 we know that the solutions fall into four classes 
(pq). Indeed, consider Eq. (72). The solutions can be 
written as (for integer J): 

IJ~pq) = lJIjf(z) = ~ (xj)>.. M [( )1( 1 ) ]1/2 
M2:0 ' J - M . J + M I 

X (ZJ-M + PZJ+M), (79) 

where the coefficients (X}'»...M satisfy, e.g., (16) and 
q = (- l)M. 

Let us restrict ourselves to integer values of J. We 
have 

lJIj: (- z) = (- 1)J q lJIi:(z). (80) 

Thus, the transformation z ~ - z corresponds exactly to 
the Z reflection of (39) in a three-dimensional Euclidean 
space. For a given (integer) value of J, the label q tells 
us whether 1j;~~(z) is symmetric or antisymmetric under 
reflection of the complex variable z. 

The label p in this model is related to the transforma
tion 

lJI~~ (z) ~ z2J lJIi: (} ). (81) 

Indeed, from (79) we have 

so that the transformation (81) corresponds to the X 
reflection of (39). 

(82) 

It is interesting to compare the two-dimensional model 
of the previous section with this one-dimenSional one. 
The functions lJIi:(z), satisfying Eq. (72) and related to 
Heun polynomials by relations (73) and (74), are genera
ting functions for the coefficients (Xj».. .M' figuring in the 
expansion of ellipsoidal harmonics in terms of spheri
cal harmonics: 

where 

Xl = sn(OI,k)dn({3,k') = sinO cos</>, 

x2 = cn(OI,k)cn({3,k') = sinO sincp, 

x3 = dn(OI,k)sn({3,k') = cosO, 

h = - (~/4) + J(J + 1), 

h' = ~/4. 
The equations of this section define a new class of poly
nomials, related to Heun functions. It should be stressed 
that they can be constructed explicitly using formula 
(79) and that the values of i\, as well as the coefficients 
(Xj)XM' will simply coincide with the corresponding 
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quantities for the ellipsoidal harmonics of the previous 
section. Hence direct use can be made of existing 
tables of Lame polynomials. 35 

8. CONCLUSIONS 

The present approach, i.e., a systematic consideration 
of different possible bases for the representations of 
various groups, may be of interest for several reasons. 
One is that a great variety of special functions becomes 
amenable to a group theoretical treatment, so that they 
can be subjected to a unified systematic investigation. 
For the 0(3) group this has lead to Lame and Heun poly
nomials (besides the obvious Legendre and Jacobi poly
nomials). For noncompact groups the variety of func
tions that occur is much larger, since many more sub
group and nonsubgroup type bases exist. Thus, already 
for the Euclidean group E2 we obtain, besides the ob
vious Bessel functions and exponentials, also Mathieu 
functions and functions of the parabolic cylinder. The 
groups O( 2, 1), O( 4), O( 3, 1), and E3 will also lead to many 
functions of interest (spheroidal functions, Mathieu func
tions, Weber functions, ellipsoidal functions, etc.). 

The results of this paper and more generally of the pre
sent approach are also of interest in view of possible 
applications in physics and mathematical phYSics-these 
have been discussed in the Introduction. We consider 
the "symmetric" expansion (66)-(68) to be of particu
lar importance in various applications. In some applica
tions in elementary particle phySics (crossing sym
metry) one needs functions F (s, t, u) that have definite 
symmetries under the permutations of three variables. 
We plan to investigate this problem in connection with 
the representation theory of the four-dimensional rota
tion group 0(4) and the Lorentz group 0(3,1). 

Let us add a few words about the future outlook. Several 
problems remain concerning the representations of 0(3). 
Thus, it would be desirable to provide a new parametri
zation of the group element of 0(3), that would be as 
"natural" for the nonsubgroup baSiS, as the Euler angles 
are for the canonical one. This would make it possible 
to find a useful representation of the D functions, and, 
in particular, would lead to new special functions as 
matrix elements. In preparation is an article in which 
we study the IJAPq> basis functions in greater detail 
for low values of J and also consider further the spe
cial functions figuring in the models. 

A systematic study of the various subgroup and nonsub
group basis for the E 2 , 0(2, 1), E 3 , 0(4), and 0(3, 1) groups 
is also in progress. 
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Nonnegativity of the Yukawa Hamiltonian 
P. C. Hemmer 

Institute of Theoretical Physics, NTH, Trondheim, Norway 
(Received 15 January 1973) 

The Yukawa Hamiltonian H = -1::.- r -Ie -~r is shown to be nonnegative for 
JL;:: [1 +6 log 2-(9/2) log 3]'/3 '" (1.67)-1. 

1. INTRODUCTION 

In a recent article Piepenbrink1 proves that the Yukawa 
Hamiltonian 

is nonnegative if 

The purpose of the present note is to demonstrate that 
the sharper condition 

p. ~ [1 + 6 log2 - ~ log3]1/3 R:< (1. 67)-1 
2 

can be obtained in a simple way. 

2. CALCULATION 

(1) 

(2) 

(3) 

For the critical value IJ.0 of p. the smallest eigenvalue of 
the Hamiltonian vanishes. The zero eigenvalue spherical 
symmetric eigenfunction r- 1 u(r) is determined as a 
bounded solution of the radial equation 

(4) 

with u(o) = O. Here x = p.r. (These eigenfunctions are 
not square integrable since zero energy belongs to the 
continuous spectrum.) Bounded solutions of (4) exist 
only for a discrete set P.o' P.1' ••• of positive p.'s, and we 
seek the largest among these. 

Integrating (4) twice, taking the boundary conditions 
u(O) = 0 and lu(co) I < co into account, we obtain 

,",u(x) = fO y-1xe-Yu(y)dy + J." e-Yu(y)dy, (5) 
" 0 

or in a symmetrized verSion, 

(6) 
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where u(x) = xl/2.e"l2.lJ;(x). The kernel 

K(x,Y) = (xy)-ll2.e-(x+y)12. min(x,y) 

is Hilbert-Schmidt. 

The traces of the iterated kernels K(n)(x,y), 

T = J 00 K(n) (x x)dx no' , 

can be evaluated for low n; in fact, 

T1 = 1, 

T 2 = - 1 + log4, 

T 3 = 1 + 6 log2 - ~ log3. 
2 

(7) 

(8) 

(9) 

The integrations involved are elementary though some
what tedious. 

By Mercer's theorem, "l;iP.7 = Tn' and the positivity of 
the p.'s, we have 

/-Lo s TJln, (10) 

which for n = 3 implies Eq. (3) above. 

Both Piepenbrink's technique and the present one can be 
iterated to yield improved bounds. 

3. COMMENT 

The upper bound (3) approximates the exact value for 
P.o within 1"10 • This follows from the existence of a 
Rayleigh-Ritz lower bound1 (1. 68)-1 for p.o' Relative to 
P.o the improvement of (3) over (2) is therefore not in
Significant. 

IJ. Piepenbrink, J. Math. Phys. 13, 1825 (1972). 

Copyright © 1973 by the American Institute of Physics 1140 



                                                                                                                                    

On analytic nonlocal potentials. I. A forward 
dispersion relation 

Te Hai Yao 

University College London, Department of Physics and Astronomy, London WCi, England 
(Received 6 December 1972) 

We propose a class of analytic short-ranged nonlocal potentials, and we obtain dispersion relations 
for the forward scattering amplitude. We use the Fredholm method for the Lippman-Schwinger 
equation for the scattering solution, and contour rotation in the analytic continuation of the forward 
scattering amplitude, 

1. INTRODUCTION 

Nonlocal potentials have been studied both in the separ
able form and simple generalizations ,1-12 and in more 
general forms. 13-19 They appear and have been used 
in problems of nuclear and atomic physics. 20-31 For 
example, meson theory suggests that any internucleon 
potential is nonlocal,28 and the Hartree Fock equation 
contains a strongly nonlocal term.23 ,27 

Analytic'ity in the k plane and dispersion relations in the 
energy variable for scattering amplitudes have been 
studied for separable nonlocal potentials and simple 
generalizations. 4 ,6,9 The nonlocal potentials which we 
shall consider are in general nonseparable, They are 
'analytic' and short-ranged. 

We shall consider any non local potential V(x,x') satis
fying the following conditions (A): 

(A1)V(x,x') is real, V(x,x') = V(x',x). 

(A2) V(X, x') is rotationally invariant: 

V(X,X') = V(x,x', cos v), 

x = Ixi > 0, x' = Ix'i > 0, 1 ~ cos v ~ - 1, 

where v is the angle between x and x' . 

(A3) V(x,x',cos v) = (e-Yy'xa)V(x,x', cos v)e-yx'/x,a, 

y> 0, ~ > a ~ 0, 

where V(x, x', cos II) is holomorphic in x and x', in 
Re x> O,Re x' > O,for 1 ?- cos II?- - 1,and continuous 
in all these variables in Re x> O,Re x' > 0,1 ?- cos II 

?- - 1,and 

Iv(x,x',cos 11)1 ~ const. 

for Re x> 0, Re x' > 0, 1 ?- cos V ?- - 1. 

Such a potential leads to a self-adjoint Hamiltonian 
operator in the space L2(R3), with domain W2,2(R3),18 

We shall show that, for such a potential, the forward 
scattering amplitude is holomorphic in k in 1m k > - y, 
cut from iy to i 00, perhaps with the exception of poles in 
the interval k = iK,y > K > O,or in ° > 1m k > - y, 
each of those on the upper imaginary axis, which are 
finite in number, corresponds to a negative energy 
bound state or bound states. 32 We obtain a substracted 
dispersion relation for the forward scattering amplitude. 

We obtain an unsubtracted dispersion relation for the 
forward scattering amplitude for such a potential satis
fying the following additional conditions (B): 

(B1) V(X, x' ,cos II) is continuous in all its variables in 

1141 J. Math. Phys., Vol. 14, No.8, August 1973 

Re x ?- 0, Re x' ?- 0, 1 ?- cos V ?- - 1, and in this region 
of x, x' , and cos II we have 

const 
IV(x,x', COSII) I ~ 

[(1 + Ixl)(1 + Ix'I))3+s-a' 

some (3 > 0. 

(B2) V(x ,x', cosv) is differentiable in cosv in 
1?- cos v?- - 1,for Re x ?- O,Re x' ?- 0. (a/a cosv) 
V(x,x', COBV) is continuous in all its variables in 
Re x ?- 0, Re x' ?- 0, 1 ?- COSV ?- - 1, and for such values 
of x,x', and cosv, we have 

--- V(x,x', cosv) ~ -----~-----I a ~ I const 
a cosv [(1 + Ixl)(1 + Ix'i ))3+s-a' 

We give examples of classes of potentials satisfying 
conditions (A) but not necessarily conditions (B), for 
which we also have an un subtracted dispersion relation 
for the forward scattering amplitude. 

The analysis may be extended to give dispersion rela
tions for the physical nonforward scattering amplitude. 

In the following, V(x,x', cosv) is defineQ,for Re x > 0, 
Re x' > 0, 1 ?- COSII?- - 1, in terms of V(x,x', cosv) by 
the relation in (A3). 

2. THE SCATTERING SOLUTION, THE BOUND 
STATES, AND THE SCATTERING AMPLITUDE 

A. The kernel 

We define an integral operator K(k) on the space of bound
ed measurable functions, for k ?- 0, by the following 
kernel: 

1 J e ik1x-x111 
K(k;x,x') = =-- fix" V(x" x') 

41T Ix - x"l " 

We have 

e-Yx' 
K(k;x,x') =A(k;x,x') --, 

x'a 

Ix'i > 0. 
(2.1) 

(2.2) 

J 1 e,X" 
iA(k;x,x')1 ~ const fix" -- ~ N, 

Ix-x"l x"a 

x"=lx"l (2.3) 
where N is a constant. 

The function K(k;x,x') depends on x == Ix'i ,x' = Ix'l, 
and cosv only, where v is the angle between x' and x": 

K(k;x,x') = K(k;x,x',COSII), 

X ?- 0, x' > 0, 1 ?- COSII ?- - 1. (2.4) 

We now define K(k;x,x',coslI),for 1m k > - y, X ?- 0, 
Re x' > 0, 1 ?- COSV ?- - 1 by 

Copyright © 1973 -by the American I nstitute of Physics 1141 
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K(kjX,x',cosV) 

= - 1 JJJx"2dx" sin IJ. dlJ.dX 
41T 

exp[ik(x2 + X"2 - 2xx" cos 1J.)1/2] 
X V(x" x' COSA) 

(x2 + x"2 - 2xx" cos 1J.)1/2 ' , (2. 5) 

where 

cosA = coslJ. COSV + sinlJ. sinv cosx. 

This reduces to (2.1) for k ;;. 0, x ;;. 0, x' > 0, 
1 ;;. cosv;;. - 1. 

We find that K(kjx,x', cosv), so defined,is holomorphic 
in k and x' in 1m k > - y, Re x' > O,for x ;;. 0, 
1 ;;. cosv:;. -l,and continuous in x,x',cosv,in x;;. 0,33 
Re x' > 0,1 ;;. cosv ;;. - 1, for 1m k > - y. 

We have 

K(kiX,X', cosv) = A(kjx,x', cos II) e-Yx'Ix'(x, (2.6) 

IA(kjx,x', cos v) I .;; N(t::)e(Y-£)x, 

1m k ;;. - (y - E), y ;;. E > 0, (2.7) 

where N(e) depends on e only. 

B. The Lippman-Schwinger equation for k real 

The Lippman-Schwinger equation for the scattering 
solution ~(kjx) for k real is 

1 iklx-x/1 
~(k;x) = eil ... x - - J dX" e J dx'V(x" ,x')~(k;x'), 

41T lx-x"l 
k=lkl ;;.0. (2.8) 

This equation may be explicitly and uniquely solved in 
the space of bounded measurable functions, when the 
Fredholm determinant of the integral operator K(k) is 
not zero, and the solution is continuous in x. 
We consider the following integral equation: 

~(k;x) = elk' x + J dX'K(kjx,x')~(k;x'). (2.9) 

We define .:1,,(k) by 

.:1o(k) = 1, 

x 

Hence 

00 (- 1)" 
6--.:1,.(k). 

,,=0 n! 

is convergent and we write 

00 (- 1)" 
~(k) = 6 -- ~,.(k). 

,.=0 n! 
(2.12) 

A(k) is the Fredholm determinant of the operator K(k). 

We define ~n(kiX,X') by 

.:1o(kiX,X') = K(kjx,x') 

~n(kjx,x') 

= J ... Jdxl· .. dx,. K(kjx,x') ... K(kjx, X,.) 

K(kjx,.,x') ... K(kjx,.,x,,) 

A(kjx,x') ... A(kjx,xn) 

x 

A(k;x,.,x') .. . A(k;x" ,X,.) 

x' = Ix'l, xi = lXii, n 2: 1; (2.13) 

We have 

1.:1,.(kjx,x')\ .;; N,.+1M"(n + 1) (n+1)/2 e-Yx'/x'''-, (2.14) 

using (2.3) and Hadamard's theorem again. 

Hence 

00 (_ l)n 
6 -- ~,.(k;x,x') 
,,=0 nl 

is uniformly convergent in x, and is a continuous function 
of x. It is also a continuous fUnction of x and x' , in all x, 
and Ix' I > 0. We write 

00 (- I)" 
~(k;x,x') = ~ -- ~n(k;x,x'), 

n=O nl 

We have 

Ixl;;. 0, Ix'l> ° 
(2.15) 

1.:1(kjX,x')\ .;; const e-Yx'/x'''-, x' = Ix'l. (2.16) 

Using (2.2), (2. 3), and (2.16), and following Ref. 35, we 
find that, for .:1(k) ;" 0, the function 

J 
.:1(kjx,x'). , 

~(k'x) = e ik•x + dx' e ,k ' x 
, ~(k) 

(2.17) 

A(kjX .. ,xl)' . . A(kj X"' x,,) 

We have 

(2.10) is a bounded continuous solution of (2.9) and,further, 
that any bounded measurable solution of (2.9) is necess
arily given by (2.17). 

\.:1,,(k)1 .;; N"Mnn,,/2, n;;. 1, 

using (2.3) and Hadamard's theorem,34 where 

e-YX 
M= jdx--, x= Ixi. 

x"-

J. Math. Phys., Vol. 14. No.8. August 1973 

(2.11) We now return to (2.8). For .:1(k) ;" 0, the solution (2.17) 
of (2.9) satisfies the relation 

1 iklx-x/11 
~(k' x) :::;; eik' x - - J dx'~(k' x') J dx" e V(x" x'). 

• 4'/1' ' Ix-x"I' 
(2.18) 
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Making use of the boundedness of lJI(k;x), we may change 
the order of integrations and obtain (2. 8). Conversely, 
suppose A(k) '" ° and that 1JI(k; x) is a bounded measur
able solution of (2.8). Then again we may change the 
order of integrations and obtain (2.9). Hence lJI(k;x) is 
given by (2.17). 

C. The functions Mk) and Mk; x, x', cos v) 

1. The function Mk) 

From (2.6) and (2.7), we see that we may define An(k), 
for 1m k > - y, by (2.10). 

We consider 1m k ? - (y - e), y ? e> 0. We have 

IA(k;x ,x', COSII) I .,,; N(e)e <'1-£)x. (2.19) 

The integral in (2.10) is uniformly convergent in 
1m k > - (y - e), and is therefore holomorphic in k in 
this region. We also have,for k in this region, the in
equality 

IAn(k)I.,,;N(e)nM(e)nnn/2, 

Hence 

J e-EX 
M(e) = dx--, 

x« 
x = Ixl. 

(2.20) 

is uniformly convergent in 1m k ? - (y - e), and the sum 

00 (- 1)n 
A(k) = L; -- An(k) 

n:O n! 
(2.21) 

is holomorphic in 1m k > - (y - e),for all y ? e> 0, and 
therefore holomorphic in 1m k > - y. 

From (2.5), we have 

K(- k*;x,x') = K(k;x,x')*. (2.22) 

Consequently,from (2.10),now extended to 1m k > - y, 
we obtain 

An(- k*) = An(k)*. (2.23) 

Hence,from (2.21), we have 

A(- k*) = A(k)*, 1m k > - y. (2.24) 

We have, from (2.20) and (2.21), the following inequality: 

IA(k)1 .,,; const, 1m k? - (y- e), Y ? e> 0. 
(2.25) 

By a method of Khuri,36 and using (2.7), we may demon
strate,37 for any 0 > ° 

IA(k;x,x', cos II) I < 0 (2.26) 

for 1m k? 0, X ~ 0, x' > 0,1 ? COSII? -l,for k 
sufficiently large. Hence we obtain,from (2.21), using 
Hadamard's theorem, 

A(k) ~ 1 , 1m k ? 0. (2.27) 
1 k 1 .... 00 

2. The function A(k; x, x', cos v) 

The function A(k;x,x'), defined in (2.13) and (2.15),for 
k? 0, Ixl ? 0, Ix'i > 0, is a function of k,x = lxi, 
x' = I x' I ,and cos II only, where II is the angle between 
x and x'. We have,from (2.4) and (2.13), 

K(k;x,x', COSII) 

K(k;x 1 ,x', COS~l) 

K(k;x,x l , COS"'l)· .. 

K(k;xl,X l , 1) ... 

K(k;x,xn' cos"'n) 

K(k;xl,xn, COSllln ) 
x = An(k;x,x', COSII), n ? 1, (2.28) 

cos~; = COS"'i COSII + sin"'i sinll cos Xi' COSll jj = cos",; cos",; + sin",; sin",; COS(Xi - Xj). (2.29) 

We now define A(k;x,x', coslI),for 1m k > - y, x? 0, 
Re x' > 0, 1 ~ COSII ? - 1, by 

00 (_ l)n 
A(k;x,x', cosv) = L; --- An(k;x,x', COSII), 

n:O n! 
(2.30) 

with 

AO(k;x,x', cos II) = K(k;x,x', COSII), (2.31) 

and An(k;x,x', COSII) given by (2.28),for n? 1. The 
series is indeed convergent since by (2 6) and (2.7), we 
have,for 1m k ? - (y - e), y ? e > 0, x ~ 0, Re x' > 0, 
1 ? COSII ? - 1, 

I An(k;x,x', cosv)1 

.,,; N(e)n+lM(e)n(n + 1) (n+l}/2 e (y -e)x I e- '1x/'x'«I. (2.32) 

The series is, moreover, uniformly convergent in 
1m k ~ - (y - e), y ? e > 0, a "" x "" O,Re x' "" b, 
1 ? cosv ? -l,for any a and b satisfying 00 > a > 0, 
00 > b > 0. 
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From the holomorphy of K(k;x,x', COSII) in k and x' in 
1m k > - y,Re x' > 0, we find that An(k;x',x', COSII) and 
A(k;x,x', COS II) are holomorphic in k and x', in 
1m k > - y, Re x' > O,for X? 0, 1 ? COSII ? -1, using 
the uniform convergence of the series. We also find that 
A(k, x,x', cosv) is continuous in x,x', and cosv, in x ? 0, 
Re x' > 0, 1 ? COSII ? - 1,for 1m k > - y. 

From conditions (A) of the potential and Schwartz re
flection principle,38 we find 

V(x,x'*, COSII) = V(x,x', COSII)* (2.33) 

for x> 0, Re x' > 0, 1 ? COSII ? - 1. Hence from (2.22) 
and (2.28), we have 

An(- k*;x,x'*, COSII) = A,,(k;x,x', COSII)* (2.34) 

for 1m k > - y, X ? 0, Re x' > 0, 1 ? COSII ? - 1. Hence, 
from (2.30) we have 
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A(- k*jx,x'*, cos II) = A(kjx,x', COSII)* 

in the same region of the variables. 

Further, we have,from (2.30) and (2.32) 

\A(kjX,x', cos II) \ ~ const x e(y-€)x\e-Y%'/x,al 

for 1m k ~ - (y - €), y ~ € > 0, X ~ 0, Re x' > 0, 
1 ~ COSII ~ - l. 

D. Zeroes of Ark) and bound states 

(2.35) 

(2.36) 

We shall see that the zeroes of A(k) in 1m k ;" ° are 
related to the bound states of the system. 

We suppose A(k) = 0, 1m k ;" O. Following Ref. 35, and 
using (2.6) and (2.7), we can show that the equation 

X(kjx) = J dx' K(kiX,X')X(kjx') (2.37) 

has a finite number of bounded measurable solutions. 

We can write (2.37) as 

- 1 J J eik1x-x"\ 
X (kjx) = - dx'X (kiX') dx" V (x" ,x') (2.38) 

411 Ix -x"I 
For any such bounded measurable solution X(kjx) of 
(2.37), we may change the order of integrations in (2.38), 
and obtain 

- 1 eiklx-xlJ! 
X (k;x) = - J dx" I dx' V(x" ,X')x (kjx'). (2.39) 

411 Ix - x"I 

We know,for 1m k:;. 0, k '" O,from Ref.lS that X (kiX) 
belongs to W 2 ,2, and that 

v2X(kjx) + k2X(kjx) = Jdx'V(x,x') X(kjx'). (2.40) 

Hence X (kjx) is an eigenfunction of the Hamiltonian 
operator, and is a bound state solution. As the Hamil
tonian operator for our system is self-adjoint, the eigen
values »2k2/2m must be real. Hence the zeroes of 
A(k), in 1m k ;" 0, k ;e O,lead to bound states of the 
system, and can only lie on the real axis or the upper 
imaginary axis. We note that for nonlocal potentials, 
positive energy bound states can occur. 

We now suppose that X (kjx) is a bound state solution, 
Le., X (kiX) is an eigenfunction of the Hamiltonian oper
ator. Then X (k;x) belongs to W2,2 and satisfies (2.40), 
and, from the self-adjointness of the Hamiltonian, k is 
real or pure imaginery. We may restrict ourselves to 
k;" O,or k = iIC,IC > O. 

As shown in ReLIS, X(kiX) necessarily satisfies (2.39). 
Hence we have 

J 1 e-yXII J e-YX' 
\ X (kiX) I ~ const x dx" -- dx'--

Ix-x"I x"a x,a 

x Ix(kjx') ~ const, x' = Ix'l,x" = Ix"l, (2.41) 

where the integral J dX'(e-Yx,/x''') I X (kjx') I exists as 
both e-yx'/x,a and X (kjx') belong to L2. Hence, by a 
change of the order of integrations, we find that X (kj x) 
is a bounded measurable solution of (2.37). Further, 
from (2.39) and the boundedness of X (kjx), we find that 
X (kjx) is continuous in X.33 

We can shOW, again following Ref. 35 and using (2.6) and 
(2.7), that (2.37) has a bounded continuous solution only 
if A(k) = O. Hence a bound state solution leads to 
A(k) = O. 
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We note that, as A(k) is holomorphic in 1m k > - yand 
not identically zero, its zeroes in 1m k > - 'Yare isolated 
ones with no finite accumulation pOint in 1m k > - 'Y' 
And as A(k) -71 as Ikl -7 CX),in 1m k;:;. 0 [(2. 27)],the 
number of zeroes of A(k) in 1m k :;. 0 is finite. Hence 
the number of bound state is finite. 

It will be of interest to show that the bound state eigen
functions X (kjx) are twice continuously differentiable at 
Ixl > O. 

E. The scattering amplitude for physical scattering angle 

The scattering amplitude for scattering through angle 0, 
11 ;" 0 ;" O,for k> O,is defined as 

F(kj cosO) = ~111 I dxe-ik',x I dx'V(x,x')1/I(k,x'), (2.42) 

wher~ ~ = kk, k' = kk', k and k' are real unit vectors 
with k·k" = cosO,and 1/I(k,x') is given by (2.17). We have 

F(kj cosO) = - 1 II dxdx'e-ikk"XV(x,x', COSII)e ikk •X' 
41T 

1 Iff A A(kjx',x", cosA) 
- - dxdx'dx"e-ikk',xV(x x' cos II) -------

411 ' , A(k) 

x e ikk •x " (2.43) 

where II is the angle between x and x' and A is the angle 
between x' and x" . 
Equation (2.43) enables us to define the scattering am
plitude F(k; cosO) for k and cosO in 11m kl< 'Y, A(k) ;e 0, 
and 1 ;" COSII ;. - 1. We can show that it is holomorphic 
in k in 11m kl < y, A(k) '" O,for I :;. cosO;:;. - 1. Indeed, 
we have 

F(kj cosO) = F(l)(kj cosO) + F(2)(k; cosO)! A(k), (2.44) 

where F(l)(kj cosO) and F(2)(kj cosO) are holomorphic in 
k in 11m kl < 'Y,for 1 ;:;. cosO;:;. -1. Further,F(l)(k;cosO) 
and F(2)(k; cosO) are continuous in cosO in I ;:;. cosO:;' - 1 
for 11m kl < 'Y' 

If we use the following expansion,for k> 0 and A(k) ;e 0, 

I ao 
F(k; cosO) = - :B (21 + l)[S,(k) - 1]P, (cosO), 

2ik 1=0 
(2.45) 

where15,17 S,(k) = 1 + 2iT,(k) = e2i o1(k), 6 1(k) being the 
reallth phase shift,15,17 and the result17 

IT,(k)1 ~ (G/.[k)l-le-(fl-<)I(1- tJ2)-1/2, any € > 0, 

(2.46) 
for 1> L,where coshtJ = 1+ 2'Y2/k2, (3 > O,and G and L 
are constants, we find that F(k; cosO) is bounded as 
k -7 ko, along the positive real axiS, where ko > 0 and 
A(ko) = O,and 

F(k; cosO) = 0(1/$). 
k .... O 

Hence from the holomorphy of F(1)(k; cosO), F(2)(k; cosO), 
and A(k) in k in 11m kl < y, we conclude that F(k; cosO) 
is defined and is holomorphic in a neighborhood of the 
positive real axis of k, and using the relation F(- kj cosO) 
= F{k; cosO)*, k :;. 0, which we may derive from (2.24), 
(2.35), and (2.43), we find that F(k; cosO) is defined and 
is holomorphic in a neighborhood of the whole real axis 
of k,for 1 :;. cosO;" - 1. 

The same conclusion is reached if we do not use (2.45). 
Since the Hamiltonian operator H is self-adjoint, the 



                                                                                                                                    

1145 T. H. Yao: On analytic nonlocal potentials. I. A forward dispersion relation 1145 

evolution operator e- iBt/71 is unitary; hence probability 
is conserved. Consequently,from the asymptotic be
haviour of a suitable wavepacket,23 from Taylor expan
sions of F(2)(k; cosO) and A(k) about ko' where ko ~ 0, 
A(ko) = 0, and from the continuity of F(2)(k; cosO) in 
cosO, we arrive at the holomorphy of F(k; cosO) in a 
neighborhood of the positive real axis of k. 

3. ANALYTIC CONTINUATION OF THE FORWARD 
SCATTERING AMPLITUDE AND A FORWARD 
DISPERSION RELATION 

A. Analytic continuation of the forward scattering 
amplitude 

From (2.43), we obtain,for 11m k I <")I, A(k) ;o! 0, the 
following expression for the forward scattering ampli
tude: 

F(k) = F(1)(k) + F(2)(k)/ A(k), 

where F(k) = F(k; cos 0 = 1), and 

F(1)(k) = 1111 sinO dOdqJ sinO'dO'dqJ' 

"" e-YZ x J dx x2e-ikzcose __ 
o xa. 

(3.1) 

J
oo ~ e-yxl" x dx' x,2V(x x' cos II) -- e ih cose , (3.2) 

o " x'a. 

F(a)(k) = 111111 sinOdOdqJ sinO'dO'dqJ' sinO"dO"dqJ" 

"" e-YZ x J dx x 2e-1h cose --
o xo. 

J"" '" e-YZ' x dx' x,2V(x x' cos II) --
o "x,a. 

X J"" dx" x"2 A(k·x' x" cosA) e ih" cose" (3.3) o ' , , 

with 

COSII = cosO cosO' + sinO sinO' cos(qJ - qJ'), 

cosA = cosO' cosO" + sinO' sinO" cos(qJ' - qJ"). 

We now analytically continue F(k) to a function holo
morphic inlmk> -y,for A(k) ;o!O,andk;o! il(where 
I( ~y. 

We consider, for k = iI(, Y > I( > - ")I, the function 

h(k;x, COSII, cosO') 

J"" '" e-Yz' , = dx' x,2V(x x' CosII) __ eikz'cose. 
o "x,a. 

(3.4) 

We write 

h(il(;x, COSII, cosO') = J"" dx'p(iK;X,X', COSII, cosO'), 
o (3.5) 

p{iK;X,x', COSII, cosO') 

- e-YXI f = x'2V(x,x', COSII) -- e""KZ'cose. (3.6) 
x'a. 

We have 

h(iK;X, COSII, cosO') 

R 
= lim lim I dX'P(iK;X,X', COSII, cosO'). (3.7) 

..... 0+ R->oo £ 

From condition (A3) on the potential, we see that 
P(iK;X ,x', COS II, cosO') is holomorphic in x' in Re x' > 0, 
and we may write 
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X' PLANE 
FIG. 1. 

o E 

h(iK;X, COSII, cosO') = lim lim {L + L - L } dx' 
..... O+.R-+oo C1 C2 C3 

x p(iK;X,x', COSII, cosO') (Fig.1), (3.8) 

where C1 and C 3 are circular arcs of angle w,1T/2 > w > 
- 1T/2. 

Again from condition (A3) on the potential, we find 

lim L dX'P(iK; x,x', cos II, cosO') = 0, 
£-00+ c1 

lim 1 dX'P(iK;X,X', COSII, cosO') ::;: o. 
R ... O c3 

Hence, we have 

h(iK;X, COSII, cosO') 

::;: lim lim L dx 'P(iK;X,X', COS II, cosO') 
..... 0+ R->oo c2 

::;: J"" d\x'le1wpUKi x , Ix'le iw , COSII, cosO'). o 

(3.9) 

(3.10) 

(3.11) 

For y > K > - y, hUK;X, COSII, cosO') is holomorphic in 
x in Re x > 0 and, for fixed 1(, is a bounded function of x, 
COS II, and cosO'. Hence we may apply the same change of 
contour of integration to the integral, 

J"" e-YZ dx x 2eKZ cose --h(iK' x COSII cosO') 
O " , , xCt. 

and obtain 

J"" e-YZ 
dx x2eKZcOSe --h(iK'x COSII cosO') 

o xa.'" 

= ~"" dlx I IxI 2e 3iw eK Izie/wcose 

e-ylzleiw 
x I I . h(iK;lxle iW, COSII, cosO'). 

x a.elCt.w 

Hence we arrive at, for ")I > K > - y, 

where 

F(l)w(k) = 1111 sinO dOdqJ sinO'dO'dqJ' 

(3.12) 

(3.13) 

"" . e-ylzleiw 
x J dixi Ix\2e3iwe-iklzle,wcose . 

o Ix I Ct.elCt.w 

x 10"" dlx'12e3iWV(ixleiW, 

-ylz'leiw 
Ix'i e 1w COS II) e eik'z"eiwcose' (3.14) 

, Ix'i ae iaw 

is defined in the strip 11m ke iw 1< y cosw, which is the 
strip I 1m k I < ")I cosw rotated through w in the clockwise 
direction about the origin (Fig. 2),from condition (A3) 
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C(E) 

E' PLANE 
E' = k,2 

k PLANE 

FIG. 2. 

. a 

FIG. 3. C(e) is the image in the E' plane of the curve in the k' plane which 
is at a distance £ > 0 from the interval k' = iK, «l > K .. ")'. £ is less than ")' 
and is sufficiently small so that all E; are on the right of C(e). It coincides 
with part of a parabola for Re E' ,,_ (")'2 _ £2). 

on the potential. Further, F U)W(k) is holomorphic in the 
strip 11m ke iw I < y cosw. 

Hence we have continued F(l~k), originally defined and 
holomorphic in 11m kl < y, to a function holomorphic in 
11m keiwl < y cosw as well,for any w in the interval 
rr/2 > w > - rr/2. Since the union of all strips 
11m keiwl< y cosw is the whole k plane cut from iy to 
iff:) and from - iy to - M, we have continued F(l>(k) to a 
function holomorphic in this cut plane. We denote this 
function by F(1)(k) also: 

x (OOdlx"l Ix"12e3iwA(k'x' Jo ' , 

Ix"l e iw, cosA)e ikl:x" leiw cosB" • (3.16) 

Hence F(k) can be continued to a function holomorphic in 
1m k > - y, perhaps with the exception of poles at the 
nonreal zeroes of A(k), and cut from iy to iff:). We denote 
this function by F(k) also. We have, for k in this region, 

F(k) = F(1)(k) + F~>(k)/ A(k). (3.17) 

B. Symmetry, asymptotic behavior, and dispersion 
relations for the forward scattering amplitude 

From the reality of the potential V(x,x', cosu),for x> 0, 
x' > 0, and from the Schwartz reflection principle,38,39 
we obtain 

V(x*,x'*, cosu) = V(x,x', cosu)* (3.18) 

for Re x > 0, Re x' > 0, 1 '" cosu '" - 1. Hence,from 
(3.14), we have 

F(l)w(_ k*) = F(l)w(k)*. (3.19) 

Hence,from (3.15), we obtain 

F(l)(- k*) = F(1~k)* (3.20) 

in the whole k plane cut from iy to iff:) and from - iy to 
- iff:). Similarly, using (2.35), (3.16) and (3.18), we 
obtain 

F~~- k*) = F~)(k)* (3.21) 

in 1m k > - y cut from iy to iff:). Hence, using (2.24), we 
have the following symmetry property: 

F(- k*) = F(k)*. (3.22) 

We now study the asymptotic behavior of F(k). From 
(2.27), (2. 36), (3.15), and (3.16) and using a theorem on 
Laplace transform,40 we immediately obtain,for k = 
Ikle-iw, 0", w >- rr/2 and k =- Ikle-iw, rr/2 > w '" 0, 
and for I k I sufficiently large, 

IF(k)I" const /cos(6~a)w (3.23) 

for all suchw. Since IRekl = Ikllcoswl,wehave,for 
1m k '" ° and for I k I sufficiently large, 

IF(k)1 .. const (lkl/IRe kl)6-2a, (3.24) 

F(1)(k) = F(l)w(k), 11m ke1wl< y cosw. (3.15) where -i> a '" 0. 

Using condition (A3) on the potential, the holomorphy 
of A(k;x',x", cosA) in k and x", in 1m k > - y,Re x"> 0, 
for x' '" 0,1 '" cos.\. '" - l,and (2.36), we find that F~~k) 
can be similarly continued to a function holomorphic in 
1m k > - y,cut from iy to iff:). We denote this function by 
F~>(k) also. We have the following representation for 
F~)(k) in 1m k > - y, 11m keiwl < y cosw: 

F~~k) = ffffff sin(Jd(JdqJ sin(J'd(J'dqJ' sin(J" d(J"dqJ" 
00 • _yl:xleiw 

X J dlxl IxI2e3iwe-Iklzle'WcOS6,=-e-:-__ 
o Ixlae1aw 

00 ~ e- y:tI 
X J dx' x'2V(lxle iw x' cosu)--

o " x'a 

J. Math. Phys., Vol. 14, No.8, August 1973 

From the holomorphy property, the above asymptotic 
behavior, and the symmetry property of F(k) in 1m k '" 0, 
we obtain the following substracted dispersion relation 
for f(E) = F(k): 

p 1 J i dij 
f(E) = L; d.(E - E S)i + (E - E s)P+1 L; L; ---

i=O • 1=1 j=l (E -Ei)j 

(E - E s)P+1 100 dE' 1m [!(E ')l 1 
+ rr 0 (E'-Es )P+1 E'-E 

(E - E )P+1 f(E') 1 
s i dE'-------- --2rr-t--"· -- C(.) (E' - Es )P+1 E' - E ' 

E = k2 (Fig. 3). (3.25) 
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Here E ;eE i,E is not on the cut from ° to 00 and is on 
the right of the contour C( e), the E i are negative bound 
state energies which are greater than - y2 ,E s is a 
constant ;e E i' for all E i' and not on the cut from ° to 00, 

and on the right of C(e), d i and d ij are constants, amd 
p = 3 - a, if the latter is an integer, and is the integer 
smaller than and nearest to 3 - a otherwise. The limit 
e --t ° may be taken. 

The physical amplitude at E > ° is 

f(E) = lim f(E + i e). (3. 26) 
£-+0+ 

The number of subtractions is reduced to one, in the 
above dispersion relation, if instead of the contour 
C(e) we use the contour C'(e) (Fig. 4). 

If we assume conditions (B) as well, then we get, using 
(2.27), (3.15) and (3.16) and using integration by parts 
in the cose variable, the result 

IF(k)1 ,,; constjlkl, 1m k ~ ° (3. 27) 

for I k I sufficiently large. 

We note that, in obtaining (3.27), we have also used the 
following relationship: 

I.t..(k;x,x', COSII) I ,,; const 1e-):"1x' ct l(1 + Ix'i )-(3+6-0:) 
(3.28) 

for 1m k :;;. 0, x :;;. 0, Re x' > 0, 1 :;;. COSII :;;. - 1, which 
may be derived from (2.5), (2. 30), and using conditions 
(B). 

Hence for potentials satisfying both conditions (A) and 
(B), we may write an unsubstrated dispersion relation 
for f(E): 

I J i d ij 1 J"" 1m [f(E')] 
f(E) = L:; L:; .. + - dE' -~--=-

i;1j-1 (E -Ez)J 7T 0 E'-E 

1 f(E') - -1 -- (Fig. 5) (3.29) 
21Ji C"(€) E' - E 

with E on the right of C"(e), not on the cut from ° to 00, 

and E "" E i,for all E i. The limit e ~ ° may be taken. 

We note that for a potenti,el satisfying conditions (A), 
with a = O,t,l,and with V(x,x', COSII) of the following 
form, 

L NI 
V(x ,x', COSII) = L:; PI (cos II) L:; CZpqe -rzpx e -YZq x', 

1;0 P,q;1 

Yzp:;;' 0, minYIP= 0, CZpq real, Clpq =CZqp , (3.30) 

we can carry out the integrations in the radial variables 
first in (3.2) and (3.3), thereby obtaining the analytic 
continuation of F(k), defined and holomorphic in 
11m k I < y, perhaps with the exception of poles at the 
nonreal zeroes of .t..(k) , to a function holomorphic in 
1m k > - y, perhaps with the exception of poles at the 
nonreal zeroes of .t..(k) , and poles or ,.!>ranch pOints at 
k = i(y + Yzp). Indeed,for a = 0,1, V(x,x', COSII) = 
SC,onst, F(k) has a pole at k = iy, and for a = t, 
V(x,x', cos II) = const, F(k) has a branch point at 
k = iy and approaches infinity as k approaches iy. 

Further,for V(x,x', cos II) of the form (3.30), we obtain, 
using (2.27) and the relations 

I (y + YIP) ± ik cosel- 1 

= [(y + yzp)2 'F 2(lm k)(y + Yzp) cose + IkI2]-1/2 

J. Math. Phys., Vol. 14, No.8, August 1973 

EI PLANE 

...--.......... 
___ - --- 0 

FIG.4. C'(£) 1s the curve consisting of parts of the two hail-lines each 
at an angle E > 0 with the negative real axis and On the left of the 
imaginary axis, and part of a straight line parallel to the imaginary 
axis and at a distance y2E/2 to the right of E I = - y2. E is less than 
1T/2 and is sufficiently small so that all Ei are on the r1ght of C'tE). 

EI PLANE 

-y o 

FIG. 5. C" (E) is the curve conSisting of all points at a 
distance E > 0 from the interval - y2 ;. E I > - 00. E is less 
than y2 and is sufficiently small so that all E, are on the right 
of C"(£). 

= I k 1-1{1 + [(y + Yzp)2 'F 2(lm k)(y + Yzp) 

xcose]/lkI2}-1/2 (3.31) 

the following asymptotic behavior for I kl sufficiently 
large: 

IF(k)1 ~ const/lkI S - 2ct, a = 0, t, 1, 1m k :;;. ° (3.32) 

and we obtain an unsubtracted dispersion relation for 
f(E) of the form (3.29). 

We now consider!: potentials satisfying conditions (A) with 
a = 0,t,1,and V(x,x', cos II) satisfying condition (C)41: 

- J""J"" , , (C) V(x,x', COSII) = d{3d{3' e- 6x e-6 X a({3,{3', COSII), o 0 

Rex> 0, Rex' > 0, 1 :;;. COSII :;;. - 1, (3. 33) 

where a({3, (3', cosu) satisfies the following: 

(i) a({3,{3', COSII) is real,a({3,/3', COSII} = a({3',{3,cOSII). 
(ii) a({3, {3', COSII) is continuous in all its variables in 

00 > {3 :;;. 0, 00 > {3' :;;. 0, 1 :;;. COSII :;;. - 1, and in this 
region 
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10'(13, /3', cos v) I ~ L; ({3, /3') ~ const, 

where ~(f3, (3') is continuous in its variables in 00 > {3 ~ 0, 
00 > f3' ~ 0, and satisfies ~(f3, tJ') = ~({3', (3), and 

foo foo d{3d{3' L;({3, /3') < 00, 
o 0 

foo d{3 L;({3, (3') ~ const. 
o 

We obtain,for42 1m k ~ - (y - E), y ~ E> 0, x ~ 0, 
Rex' > 0, 1 ~ cosv ~-1, 

e-Y"'f OO 

K(kjx,x', cosv) =-, - 0 df3' e- 8 ''''po(k;x,(3', cosv), 
x a (3.34) 

e-Y'" foo , , 
a(k' x x' cosv) = -- d{3' e- 8 % p(k' x a' cosv) 

, , , x'a 0 ' ,~, (3.35) 

where po(k;x, (3', cos v) and p(k;x, (3', cosv) are continu
ous in x, /3', cosv, in x ~ 0, 00 > /3' ~ 0, 1 ~ cosv ~ - 1, 
and satisfy42 

IPo(k;x,/3',cosv)1 ~ const x e(y-f)" J
o

oo 
d{3" ~(f3",/3'), 

(3.36) 

Ip(kjx,{3', cos v) I ~ const x e(y-€)% foo df3" ~((3",f3'). 
o (3.37) 

We now carry out the integrations in the radial vari
ables first in (3.2) and (3.3), making use of (3.35) and 
(3.37). We obtain 

with 

I Fa) (k) I ~ const x I~+) (k) I~-) (k), 

IF(2)(k)1 ~ const x I~)(k)I~-)(k), 

O! = 0, t, 1, Imk ~ - (y - e:), y ~ E > 0, 

I~.J(k) = r1 
d cosB foo df3 1 

-1 0 I (y + (3) ± ik cosBl3-a 

1+1 foo = -1 d cosB 0 df3 

x 1 

(3.38) 

(3.39) 

[I k 12 ;: 2k2(y + (3) cosB + (y + (3)2](3-a)/2 
(3.40) 

where k1 = Rek ;0' 0, k2 = Imk ;0' O. We have43 

J
+1 1 

I IJ±) (k) I = d cosB ------
-1 (Ik 12 - k~ cos2B) 

( 
k2 cosB - y ) 

x 1+-:--:-----"------
(lkI 2 ;: 2k2y cosB + y2)1/2 

1 
1

+1 
~ const x d cosB .,......,,..------

-1 I k 12 - ki cos2B ' 

Using 

In(l + ~) < ~, ° < ~ < 1, 

Ikl »y, 

(3.41) 

Ikl »y. 

Iln(1-~)1~1/(1-~)Il, 0"~<1, anYT/>O, 

J. Math. Phys., Vol. 14, No.8, August 1973 

and 

Ikl-lk21 = (lkI2_lk212)/(lkl + Ik21) 

> Ik112/2Ikl, 

we obtain, for I k I »y, 

IIJ±) (k)1 ~const + const _1 ___ 1_ 
Ikl2 Ik1 1-21l Ik21 Ik1 121l ' 

.', II(±)(k)l .. const {lk11 ~ a1 > 0, 
o IkI1-21l' Ik21~a2>0, 

{
a1 > Ik11 > 0, 

Ik I »a1' 

(3.42) 

(3.43) 

and a1 and a2 are constants. Further, from (3.41), we 
have 

{
a2 > Ik2.1 > 0, 
Ikl »a2 • 

We now consider I1±) (k). We have43 

1+1 1 
II(±)(k)1 = d cosB -,-..,----=---...,-

1 -1 (lkI2_k~coS2B)1/2 

const 
.'. I 11±)(k)I ~ l"k;f' Ik21 ~ a, 

{
a2 > Ik21 > 0, 

Ikl »a2 • 

LaStly, we consider I1~~(k). We have 

where 

X(±)(k) = Ik12;: 2k2(y + (3) cosB + (y + 13)2, 

(3.44) 

(3.45) 

(3.46) 

(±) 1+1 1 
,'. II1/2(k) I .. const x -1 d cosB (lkl 2 _ k~ cos2B)3/4' 

Ikl »y, 

( 
1 )1/2 

,'. II~12(k)1 ~ const x i: d cosB 

( 
+1 1 )112 

X 11 d cosB (I k 12 _ ki cos2B)3/2 • 
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:. We have43 

Ikl »y. (3.47) 

For k2 = 0, we have (3.38), (3.39), and (3.40), with 

(3.48) 

The results (3.42)-(3.48) on I~±)(k), together with 
(2.27), (3.38), (3.39) and the holomorphy and symmetry 
properties previously obtained for F(k), enable us to 
write an unsubtracted dispersion relation for !(E) of 
the form (3.29) for the class of potentials satisfying 
conditions (A) and (C), for Q = 0, t, 1. 
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APPENDIX A 

We now prove (2.26). 

We have 

A(k; x,x', cos II) = I dx" eik1x-x"l Q(x, x', x"), 

x= lxi, x'= Ix'l, x·x'=XX'COSIl 

with 

Q(x, x', x") = 1 e-YX" V(x", x'), x" = Ix" I. 
Ix- x"l x"a 

We have 

I dx" I Q(x, x', x") I < 00. 

Hence, since Cb(R3) is dense in Ll(R3), there exists, 
for every 6 > 0, a function Q 6 (x, x', x") such that, as a 
function of x", Q 6 (x, X', X") vanishes outside a sphere 
with center at the origin x" = 0, lias continuous first 
derivatives, and satisfies 

I dx" I Q(x, X',X") - Q6(X, x', x")1 < 6/2. 

Hence 

IA(k;x,x',cosll)l .. 6/2 + II dX"eikIX-X"IQ6(X,X',x")I. 

We have 

I I dx"eiklx-x"l Q6(X, x', X")! 

= If.: dx1 II dx2dx:;eiklx-x"IQ6(X'X',x") 

+ {.C: + I",,""}dxl II dX2dx:;eik,x-xu'Q6(X,1{.',x")1 

.. ,e.. L 1 (x, x', 6) + (1/lkl)L2(x,x',6), k ¢ 0, 

where ,e. > 0, Ll (x, X; 6) > 0, L 2(x, x', 6) > 0, using 
integration by parts. Hence, for any 6 > 0, we have 

IA(k;x,x',cosli)l .. 6/2 +,e.. L1 (x,x',6) 

+ (1/1 k I) L 2 (x, x', 6). 

J. Math. Phys., Vol. 14, No.8, August 1973 

From (2.7), we find that 

I Ll (x, x', 6) I .. const, 

IL 2 (x,x',6)1 .. const, 

for all X, x', and 6. Hence we may choose ,e. so small 
and I k I so large that 

IA(k;x,x', cos II) I .. 6. 

APPENDIX B 

Here we obtain a result which enables us to give a set 
of sufficient conditions for V(x,x', cos II) to satisfy 
condition (C). 

We introduce a class of functions !(zl; z2) of two com
plex variables zl and z2' Rez1 ~ 0, Rez 2 ~ 0, defined 
in the following way: 

!(zl; z2) satisfies the following set of sufficient condi
tions: 

(i) !(zl;z2) = !(z2;ZI)' 

(ii) !(ZI;z2) is holomorphic in zl in Rez1 > 0, for each 
z2 in Rez2 ~ O. 

(iii) !(z 1; z 2) is continuous in z 1 and z 2' in Re z 1 ~ 0, 
Rez2 ;. O. 

(iv) !(ZI; z 2) satisfies the bound: 

1!(zl;z2)1 .. const/I(1 + zl)(l + z2)ll+A. 

for some ~ > 0, in Rez1 ;. 0, Rez 2 ;. O. 

We then have the following result: 

(I) 

for Rez1 > 0, Rez 2 > 0, where a(j31;f32) is continuous, 
bounded, and symmetric in 131 and f3 2 , in 00 > 131 ~ 0, 
00 > fJ 2 ;. O. 

Such a representation is unique when the restriction that 
a(fJ1 ; fJ 2 ) is continuous in f3 1 and fJ 2 , in 00 > f3 1 ;. 0, 
00 > fJ2 ;. 0, is imposed. The unique spectral function 
is determined by 

Further, a(f31; fJ 2) is real in 00 > f31 ;. 0, 00 > fJ 2 ;. 0, if 
!(zl; z2) is real in 00 > zl;' 0, 00 > z ~ O. For then, 
by the Schwartz reflection principle,14 we have 

!(zt; z;) = !(zl; z2)·' 

Hence the reality of a(f31; f32) follows from (B2). 

Let us now impose a further condition on !(zl; z2): 

and 

d 2 d 2 
- -!(iv1 ;iv2 ) 
dv~ dvf 

all exist. are continuous in VI and v 2 ' and are bounded by 
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const/I (1 + iv1 )(1 + iv 2 ) 11+A, in 00 > v 1 > - 00, 

00 > v 2 > - 00. 

For functions f(Z1; z2) satisfying conditions (i)-(v), we 
have the stronger result: 

(II) 

f(Z1;Z2) = fooo fooo d{31d{32 e-BIZle-B2Z2a({31;{32) (B3) 

in Rez1 ~ 0, Rez2 ~ O,where a({31;{32) is continuous 
in {31 and {32' bounded, symmetric, and absolutely inte
grable in 00 > fJ 1 ~ 0, 00 > {3 2 ~ 0, and satisfies 

1(1 + (31)2a ({31; (32)(1 + fJ 2)21 ~ const, 

00 > {31 ~ 0, 00 > (32 ~ 0. (B4) 

The representation is unique when the restriction that 
a({31; (32) is continuous in (31 and fJ 2, in 00 > t31 ~ 0, 
00 > t3 2 ~ 0, is imposed. The unique spectral function 
is given by (B2). 

We note that the following lemma leads to the above 
results: 

Lemma: If f(z) is holomorphic in Re z > ° and con
tinuous in Re z ~ 0, and satiSfies the bound 

If(z) I ~ const/11 + z 11+1.., Rez ~ 0, 

then 

f(z) = foo d{3 e- B"p({3), Rez > 0, 
o 

where p({3) is continuous and bounded in 00 > (3 ~ 0. The 
representation is unique when the restriction that p({3) 
is continuous in 00 > (3 ~ ° is imposed. The unique 
spectral function is given by 

1 f+ioo 
P({3)=-2. dzeBzf(z). 

1ft - ioo 
To prove the lemma, we define 

1 +ioo 
p({3) = -. f dz e B Z f(z). 

21ft -ioo 
p({3) is continuous and bounded in 00 > (3 ~ 0. 

We consider 

f oo foo 1 J+iOO f(z) = d{3 e- Bzp({3) = d{3 e- Bz -. dweBwf(w). 
o 0 21ft -ioo 

We have the absolute convergence of the double integral 

x foo foo d{3dv e-Bz 1 < 00, 
o -00 11 + iv 11+1.. 

Rez > 0. 

Hence we can change the order of integrations, for 

K(k; Xj-1'~) 
K(k;xj+1X1 ) 
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Rez > 0, and obtain 

() 
1 f+ioo f(w) 

fz =-. dw--. 
21ft -ioo W - Z 

We have 

. f a+ioo f(w) f+ioo f(w) 
11m dw --- dw--
a-+O a-too W - Z -ioo W - Z 

1
+iOO f(w + a) - f(w) 

= ~ilB -;00 dw w _ z + a ' Rez > 0, a> 0. 

The last limit may be proved to be zero. Hence we have 

1 fa+ioo f(w) 
f(z) = lim -2 . dw --

a-+O 1ft a-ioo W - Z 

= f(z), Rez> 0, 

:. f(z) = foo d{3 e-B"p({3), 
o Rez > 0. 

The uniqueness follows from the identity theorem in 
Laplace transform theory. 

APPENDIX C 

We prove (3.35) and (3.37). 

From (3.28), extended to Imk > - y, x ~ 0, Rex' > 0, 
1 ~ COSII ~ -l,we have 

~n (k;x, x', COSII) = ~n (k)K(k; x,x', cos II) 

- n~n-1 (k) fff x"2dx" sinj.t dl-tdx K(k;x,x", cosj.t) 

x K(k;x",x', COSA) 
n 

+ .~ ffffff x?dxi sinj.tidj.tidXiXldxj sinj.tj dl1 d Xj 
•• }=1 
;,tj 

x K(k; x, xi' COSj.ti )K(k; Xj ,x', COSAj ) 

x f;/k;xi' j.ti,Xi,xj ,11 ,Xj)' n ~ 1, 

where 

COSA = cosj.t COSII + sinj.t sinll cosx, 

COSAj = cosj.tj COSII + sinj.tj sinll COSXj , 

with fi/k; xi' j.ti' Xi' xj ' j.t}, Xj) given by the following 
expression, where Xi ana x. are the vectors with 
Xi' j.ti' Xi' and Xj ' j.tj' Xj , as their polar coordinates 
respectively: 

fij(k; xi' x
j

) = (-1)i+j-1 J ... f dX1 ••. dXi-1 dX i+1 
••• dXj _1dxj+1 ••• d~ 

x gi/k;x1, •• ; ,~), i <j, n ~ 2, 

fij(k;xi,xj ) = (_1)i+j-1 f··· f dx1 ••• dxj_1dXj +1 
••• dXi-1 dXi+l ••• d~ 

i > j, n ~ 2, 

and 

,n ~ 2. 



                                                                                                                                    

1151 T. H. Yao: On analytic nonlocal potentials. I. A forward dispersion relation 1151 

We have, using (2.6) and (2.7), 

Hence, using (3.34) and (3.36), we obtain 

t.n(k;x,x', cosv) = e-yx,/x'a fooo dfJ' 

x e-8'x'Pn(k;x,{3',cosv) 

with 

IPn(k;x,{3', cosv) I .. e(y-e)x 100 
d{J" I;({3",{J') 

o 
x {const x t.n(k) + const x n x An - 1 (k) 

+ const x N{t:)n-1M(E)n-2n(n _ 1)(n-l)/2}, n ;;. 1. 

Hence, using (2.20), we obtain 

e-YX' 100 
t.(k;x,x', COSI') = -- d{J' e-8'x'p(k;x,{J', cosv), 

x'a 0 

p(k;X,fJ',cosv)=I; (-l)n Pn(k;x,{3',cosv), 
n=O n! 

Ip(k;x, fJ', cosv}! .. const x e(y-e)x 1000 
dfJ" I; ({3", (3'), 

for Imk ;;. - (y - E), Y ;;. € > 0, 00 > x ;;. 0, 00 > fJ' ;;. 0, 
1 ;;. cosv ;;. -1. 
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Erratum: Neutron transport equations with spin-orbit 
coupling 
[J. Math. Phys. 14, 97 (1973)] 

L. M. Tannenwald 

Department of Physics, University of California, Berkeley, California 94720 
(Received 14 March 1973) 

Eq. (2.26): F should be a subscript. 

Eq. (3. 15): The square brackets of the integral should 

Erratum: A stochastic Gaussian beam 
[J. Math. Phys. 14, 84 (1973)] 

contain 

G. C. Papanicolaou, D. McLaughlin, and R. Burridge 

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 
(Received 6 March 1973) 

The third line of Eq. (3. 13) should be: 

1 1"" ap(O) cotha a 2p(O) 
-"2 0 R(s) sin(2s)ds ax - 21' sinhB axa¢' 

Errata: Gauge transformations of second type and their 
implementations. I. Fermions 
[J. Math. Phys. 13, 2002 (1972)] 

J. F. Gille and J. Manuceau 

Centre de Physique Theorique, G.N.R.S., 13-Marseille 9', France 
(Received 6 March 1973) 

The first equation of the second column, p. 2002 should 
read 

1T'(B(l/Iik» =~r11T'j (Ej 6 j ) ® 1T' k(B(l/Ijk»~;l,lj. 
1 1 

should read 

ct t (E~, s) EEl 6 1 n ct 0 (E~ , s) ~ Un":' 1 (ct e (En+ 1 k' S) 
, k ' 

The second equation of the second column p. 2002 should 
read 

The inequality and equality of lines 27 -30 of the first 
column, p. 2005 should read 

Inequality (ii) in 2. Necessity should read 

The inclusion of line 24 of the first column, p. 2005 

1152 J. Math. Phys., Vol. 14, No.8, August 1973 

11 (wo - WnOTa.) I ct (En ,S)C 11 

= 1\ (Wo - wnOTa)!ct e (E;:-, s) EEl 61,nctO(E;:-, s) 1\ 

~ lim 11 (wo - WnOTa)!ct e (En+1,k' s) 
k,oo 

Reference 10 should read E. Balslev and A. Verbeure, 
Commun. Math. Phys. 7,55 (1968). 
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